The SULFs, Extracellular Sulfatases for Heparan Sulfate, Promote the Migration of Corneal Epithelial Cells during Wound Repair

Maltseva I, Chan M, Kalus I, Dierks T, Rosen SD (2013)
PloS one 8(8): e69642.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Maltseva, Inna; Chan, Matilda; Kalus, InaUniBi; Dierks, ThomasUniBi; Rosen, Steven D
Abstract / Bemerkung
Corneal epithelial wound repair involves the migration of epithelial cells to cover the defect followed by the proliferation of the cells to restore thickness. Heparan sulfate proteoglycans (HSPGs) are ubiquitous extracellular molecules that bind to a plethora of growth factors, cytokines, and morphogens and thereby regulate their signaling functions. Ligand binding by HS chains depends on the pattern of four sulfation modifications, one of which is 6-O-sulfation of glucosamine (6OS). SULF1 and SULF2 are highly homologous, extracellular endosulfatases, which post-synthetically edit the sulfation status of HS by removing 6OS from intact chains. The SULFs thereby modulate multiple signaling pathways including the augmentation of Wnt/ß-catenin signaling. We found that wounding of mouse corneal epithelium stimulated SULF1 expression in superficial epithelial cells proximal to the wound edge. Sulf1(-/-) , but not Sulf2(-/-) , mice, exhibited a marked delay in healing. Furthermore, corneal epithelial cells derived from Sulf1(-/-) mice exhibited a reduced rate of migration in repair of a scratched monolayer compared to wild-type cells. In contrast, human primary corneal epithelial cells expressed SULF2, as did a human corneal epithelial cell line (THCE). Knockdown of SULF2 in THCE cells also slowed migration, which was restored by overexpression of either mouse SULF2 or human SULF1. The interchangeability of the two SULFs establishes their capacity for functional redundancy. Knockdown of SULF2 decreased Wnt/ß-catenin signaling in THCE cells. Extracellular antagonists of Wnt signaling reduced migration of THCE cells. However in SULF2- knockdown cells, these antagonists exerted no further effects on migration, consistent with the SULF functioning as an upstream regulator of Wnt signaling. Further understanding of the mechanistic action of the SULFs in promoting corneal repair may lead to new therapeutic approaches for the treatment of corneal injuries.
Erscheinungsjahr
2013
Zeitschriftentitel
PloS one
Band
8
Ausgabe
8
Art.-Nr.
e69642
ISSN
1932-6203
eISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2623281

Zitieren

Maltseva I, Chan M, Kalus I, Dierks T, Rosen SD. The SULFs, Extracellular Sulfatases for Heparan Sulfate, Promote the Migration of Corneal Epithelial Cells during Wound Repair. PloS one. 2013;8(8): e69642.
Maltseva, I., Chan, M., Kalus, I., Dierks, T., & Rosen, S. D. (2013). The SULFs, Extracellular Sulfatases for Heparan Sulfate, Promote the Migration of Corneal Epithelial Cells during Wound Repair. PloS one, 8(8), e69642. doi:10.1371/journal.pone.0069642
Maltseva, I., Chan, M., Kalus, I., Dierks, T., and Rosen, S. D. (2013). The SULFs, Extracellular Sulfatases for Heparan Sulfate, Promote the Migration of Corneal Epithelial Cells during Wound Repair. PloS one 8:e69642.
Maltseva, I., et al., 2013. The SULFs, Extracellular Sulfatases for Heparan Sulfate, Promote the Migration of Corneal Epithelial Cells during Wound Repair. PloS one, 8(8): e69642.
I. Maltseva, et al., “The SULFs, Extracellular Sulfatases for Heparan Sulfate, Promote the Migration of Corneal Epithelial Cells during Wound Repair”, PloS one, vol. 8, 2013, : e69642.
Maltseva, I., Chan, M., Kalus, I., Dierks, T., Rosen, S.D.: The SULFs, Extracellular Sulfatases for Heparan Sulfate, Promote the Migration of Corneal Epithelial Cells during Wound Repair. PloS one. 8, : e69642 (2013).
Maltseva, Inna, Chan, Matilda, Kalus, Ina, Dierks, Thomas, and Rosen, Steven D. “The SULFs, Extracellular Sulfatases for Heparan Sulfate, Promote the Migration of Corneal Epithelial Cells during Wound Repair”. PloS one 8.8 (2013): e69642.

14 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Glycosylation pathways at the ocular surface.
Rodriguez Benavente MC, Argüeso P., Biochem Soc Trans 46(2), 2018
PMID: 29523772
The "in and out" of glucosamine 6-O-sulfation: the 6th sense of heparan sulfate.
El Masri R, Seffouh A, Lortat-Jacob H, Vivès RR., Glycoconj J 34(3), 2017
PMID: 27812771
Efficacy and Safety Comparison Between Suberoylanilide Hydroxamic Acid and Mitomycin C in Reducing the Risk of Corneal Haze After PRK Treatment In Vivo.
Anumanthan G, Sharma A, Waggoner M, Hamm CW, Gupta S, Hesemann NP, Mohan RR., J Refract Surg 33(12), 2017
PMID: 29227512
The role of heparan sulphate in development: the ectodermal story.
Coulson-Thomas VJ., Int J Exp Pathol 97(3), 2016
PMID: 27385054
Sulfatase 2 facilitates lymphangiogenesis in breast cancer by regulating VEGF-D.
Zhu C, Qi X, Zhou X, Nie X, Gu Y., Oncol Rep 36(6), 2016
PMID: 27748846
SULF2, a heparan sulfate endosulfatase, is present in the blood of healthy individuals and increases in cirrhosis.
Singer MS, Phillips JJ, Lemjabbar-Alaoui H, Wang YQ, Wu J, Goldman R, Rosen SD., Clin Chim Acta 440(), 2015
PMID: 25444749
Measuring sulfatase expression and invasion in glioblastoma.
Wade A, Engler JR, Tran VM, Phillips JJ., Methods Mol Biol 1229(), 2015
PMID: 25325976
Loss of corneal epithelial heparan sulfate leads to corneal degeneration and impaired wound healing.
Coulson-Thomas VJ, Chang SH, Yeh LK, Coulson-Thomas YM, Yamaguchi Y, Esko J, Liu CY, Kao W., Invest Ophthalmol Vis Sci 56(5), 2015
PMID: 26024086
Effects of new biomimetic regenerating agents on corneal wound healing in an experimental model of post-surgical corneal ulcers.
Alcalde I, Íñigo-Portugués A, Carreño N, Riestra AC, Merayo-Lloves JM., Arch Soc Esp Oftalmol 90(10), 2015
PMID: 26101128
Quantitative stain-free and continuous multimodal monitoring of wound healing in vitro with digital holographic microscopy.
Bettenworth D, Lenz P, Krausewitz P, Brückner M, Ketelhut S, Domagk D, Kemper B., PLoS One 9(9), 2014
PMID: 25251440

76 References

Daten bereitgestellt von Europe PubMed Central.

Sulf-2: an extracellular modulator of cell signaling and a cancer target candidate.
Rosen SD, Lemjabbar-Alaoui H., Expert Opin. Ther. Targets 14(9), 2010
PMID: 20629619
Glycogene expression alterations associated with pancreatic cancer epithelial-mesenchymal transition in complementary model systems.
Maupin KA, Sinha A, Eugster E, Miller J, Ross J, Paulino V, Keshamouni VG, Tran N, Berens M, Webb C, Haab BB., PLoS ONE 5(9), 2010
PMID: 20885998
Type 2 diabetes in mice induces hepatic overexpression of sulfatase 2, a novel factor that suppresses uptake of remnant lipoproteins.
Chen K, Liu ML, Schaffer L, Li M, Boden G, Wu X, Williams KJ., Hepatology 52(6), 2010
PMID: 21049473
Expression regulation and function of heparan sulfate 6-O-endosulfatases in the spermatogonial stem cell niche.
Langsdorf A, Schumacher V, Shi X, Tran T, Zaia J, Jain S, Taglienti M, Kreidberg JA, Fine A, Ai X., Glycobiology 21(2), 2010
PMID: 20855470
IκB kinase β regulates epithelium migration during corneal wound healing.
Chen L, Meng Q, Kao W, Xia Y., PLoS ONE 6(1), 2011
PMID: 21264230
Hallmarks of cancer: the next generation.
Hanahan D, Weinberg RA., Cell 144(5), 2011
PMID: 21376230
Heparan sulfate proteoglycans.
Sarrazin S, Lamanna WC, Esko JD., Cold Spring Harb Perspect Biol 3(7), 2011
PMID: 21690215
WT1-dependent sulfatase expression maintains the normal glomerular filtration barrier.
Schumacher VA, Schlotzer-Schrehardt U, Karumanchi SA, Shi X, Zaia J, Jeruschke S, Zhang D, Pavenstadt H, Pavenstaedt H, Drenckhan A, Amann K, Ng C, Hartwig S, Ng KH, Ho J, Kreidberg JA, Taglienti M, Royer-Pokora B, Ai X., J. Am. Soc. Nephrol. 22(7), 2011
PMID: 21719793
Lumican promotes corneal epithelial wound healing.
Liu CY, Kao WW., Methods Mol. Biol. 836(), 2012
PMID: 22252641
Heparan sulfate sulfatase SULF2 regulates PDGFRα signaling and growth in human and mouse malignant glioma.
Phillips JJ, Huillard E, Robinson AE, Ward A, Lum DH, Polley MY, Rosen SD, Rowitch DH, Werb Z., J. Clin. Invest. 122(3), 2012
PMID: 22293178
Roles of heparan sulfate sulfation in dentinogenesis.
Hayano S, Kurosaka H, Yanagita T, Kalus I, Milz F, Ishihara Y, Islam MN, Kawanabe N, Saito M, Kamioka H, Adachi T, Dierks T, Yamashiro T., J. Biol. Chem. 287(15), 2012
PMID: 22351753
Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans.
Morimoto-Tomita M, Uchimura K, Werb Z, Hemmerich S, Rosen SD., J. Biol. Chem. 277(51), 2002
PMID: 12368295
Corneal injury. A relatively pure model of stromal-epithelial interactions in wound healing.
Wilson SE, Mohan RR, Ambrosio R, Mohan RR., Methods Mol. Med. 78(), 2003
PMID: 12825262
QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling.
Ai X, Do AT, Lozynska O, Kusche-Gullberg M, Lindahl U, Emerson CP Jr., J. Cell Biol. 162(2), 2003
PMID: 12860968
Domain-specific modification of heparan sulfate by Qsulf1 modulates the binding of the bone morphogenetic protein antagonist Noggin.
Viviano BL, Paine-Saunders S, Gasiunas N, Gallagher J, Saunders S., J. Biol. Chem. 279(7), 2003
PMID: 14645250
Wnt/β-catenin signaling and disease.
Clevers H, Nusse R., Cell 149(6), 2012
PMID: 22682243
Overexpression of Sulf2 in idiopathic pulmonary fibrosis.
Yue X, Lu J, Auduong L, Sides MD, Lasky JA., Glycobiology 23(6), 2013
PMID: 23418199
The heparanome--the enigma of encoding and decoding heparan sulfate sulfation.
Lamanna WC, Kalus I, Padva M, Baldwin RJ, Merry CL, Dierks T., J. Biotechnol. 129(2), 2007
PMID: 17337080
Secreted sulfatases Sulf1 and Sulf2 have overlapping yet essential roles in mouse neonatal survival.
Holst CR, Bou-Reslan H, Gore BB, Wong K, Grant D, Chalasani S, Carano RA, Frantz GD, Tessier-Lavigne M, Bolon B, French DM, Ashkenazi A., PLoS ONE 2(6), 2007
PMID: 17593974
Reduced migration, altered matrix and enhanced TGFbeta1 signaling are signatures of mouse keratinocytes lacking Sdc1.
Stepp MA, Liu Y, Pal-Ghosh S, Jurjus RA, Tadvalkar G, Sekaran A, Losicco K, Jiang L, Larsen M, Li L, Yuspa SH., J. Cell. Sci. 120(Pt 16), 2007
PMID: 17666434
SULF1 and SULF2 regulate heparan sulfate-mediated GDNF signaling for esophageal innervation.
Ai X, Kitazawa T, Do AT, Kusche-Gullberg M, Labosky PA, Emerson CP Jr., Development 134(18), 2007
PMID: 17720696
Transcriptome-wide analysis of blood vessels laser captured from human skin and chronic wound-edge tissue.
Roy S, Patel D, Khanna S, Gordillo GM, Biswas S, Friedman A, Sen CK., Proc. Natl. Acad. Sci. U.S.A. 104(36), 2007
PMID: 17728400
Sulfs are regulators of growth factor signaling for satellite cell differentiation and muscle regeneration.
Langsdorf A, Do AT, Kusche-Gullberg M, Emerson CP Jr, Ai X., Dev. Biol. 311(2), 2007
PMID: 17920055
Autocrine WNT signaling contributes to breast cancer cell proliferation via the canonical WNT pathway and EGFR transactivation.
Schlange T, Matsuda Y, Lienhard S, Huber A, Hynes NE., Breast Cancer Res. 9(5), 2007
PMID: 17897439
Redundant function of the heparan sulfate 6-O-endosulfatases Sulf1 and Sulf2 during skeletal development.
Ratzka A, Kalus I, Moser M, Dierks T, Mundlos S, Vortkamp A., Dev. Dyn. 237(2), 2008
PMID: 18213582
Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1.
Noe V, Fingleton B, Jacobs K, Crawford HC, Vermeulen S, Steelant W, Bruyneel E, Matrisian LM, Mareel M., J. Cell. Sci. 114(Pt 1), 2001
PMID: 11112695
Heparan sulfate: decoding a dynamic multifunctional cell regulator.
Turnbull J, Powell A, Guimond S., Trends Cell Biol. 11(2), 2001
PMID: 11166215
Integrity of epithelium and endothelium in organ-cultured human corneas.
Crewe JM, Armitage WJ., Invest. Ophthalmol. Vis. Sci. 42(8), 2001
PMID: 11431439
Extracellular matrix and wound healing.
Zieske JD., Curr Opin Ophthalmol 12(4), 2001
PMID: 11507335
Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase.
Dhoot GK, Gustafsson MK, Ai X, Sun W, Standiford DM, Emerson CP Jr., Science 293(5535), 2001
PMID: 11533491
Large, tissue-regulated domain diversity of heparan sulfates demonstrated by phage display antibodies.
Dennissen MA, Jenniskens GJ, Pieffers M, Versteeg EM, Petitou M, Veerkamp JH, van Kuppevelt TH., J. Biol. Chem. 277(13), 2002
PMID: 11790764
Epithelial repair: roles of extracellular matrix.
Saika S, Ohnishi Y, Ooshima A, Liu CY, Kao WW., Cornea 21(2 Suppl 1), 2002
PMID: 11995806
Order out of chaos: assembly of ligand binding sites in heparan sulfate.
Esko JD, Selleck SB., Annu. Rev. Biochem. 71(), 2001
PMID: 12045103
Defects in keratinocyte activation during wound healing in the syndecan-1-deficient mouse.
Stepp MA, Gibson HE, Gala PH, Iglesia DD, Pajoohesh-Ganji A, Pal-Ghosh S, Brown M, Aquino C, Schwartz AM, Goldberger O, Hinkes MT, Bernfield M., J. Cell. Sci. 115(Pt 23), 2002
PMID: 12414997
Wound-induced HB-EGF ectodomain shedding and EGFR activation in corneal epithelial cells.
Xu KP, Ding Y, Ling J, Dong Z, Yu FS., Invest. Ophthalmol. Vis. Sci. 45(3), 2004
PMID: 14985295
QSulf1, a heparan sulfate 6-O-endosulfatase, inhibits fibroblast growth factor signaling in mesoderm induction and angiogenesis.
Wang S, Ai X, Freeman SD, Pownall ME, Lu Q, Kessler DS, Emerson CP Jr., Proc. Natl. Acad. Sci. U.S.A. 101(14), 2004
PMID: 15051888
A sulfatase regulating the migratory potency of oligodendrocyte progenitor cells through tyrosine phosphorylation of beta-catenin.
Kakinuma Y, Saito F, Ohsawa S, Furuichi T, Miura M., J. Neurosci. Res. 77(5), 2004
PMID: 15352211
Calcium-induced abnormal epidermal-like differentiation in cultures of mouse corneal-limbal epithelial cells.
Kawakita T, Espana EM, He H, Yeh LK, Liu CY, Tseng SC., Invest. Ophthalmol. Vis. Sci. 45(10), 2004
PMID: 15452056
Beta-adrenergic and serotonergic responsiveness of rabbit corneal epithelial cells in culture.
Jumblatt MM, Neufeld AH., Invest. Ophthalmol. Vis. Sci. 24(8), 1983
PMID: 6135673
Effect of an aldose reductase inhibitor, CT-112, on healing of the corneal epithelium in galactose-fed rats.
Awata T, Sogo S, Yamagami Y, Yamamoto Y., J Ocul Pharmacol 4(3), 1988
PMID: 3143793
An SV40-immortalized human corneal epithelial cell line and its characterization.
Araki-Sasaki K, Ohashi Y, Sasabe T, Hayashi K, Watanabe H, Tano Y, Handa H., Invest. Ophthalmol. Vis. Sci. 36(3), 1995
PMID: 7534282
Misregulation of stromelysin-1 expression in mouse mammary tumor cells accompanies acquisition of stromelysin-1-dependent invasive properties.
Lochter A, Srebrow A, Sympson CJ, Terracio N, Werb Z, Bissell MJ., J. Biol. Chem. 272(8), 1997
PMID: 9030563
Synchronization of the G1/S transition in response to corneal debridement.
Chung EH, Hutcheon AE, Joyce NC, Zieske JD., Invest. Ophthalmol. Vis. Sci. 40(9), 1999
PMID: 10440248
Epidermal growth factor receptor: a novel target of the Wnt/beta-catenin pathway in liver.
Tan X, Apte U, Micsenyi A, Kotsagrelos E, Luo JH, Ranganathan S, Monga DK, Bell A, Michalopoulos GK, Monga SP., Gastroenterology 129(1), 2005
PMID: 16012954
Heparan sulphate proteoglycans: the sweet side of development.
Hacker U, Nybakken K, Perrimon N., Nat. Rev. Mol. Cell Biol. 6(7), 2005
PMID: 16072037
Sulf-2, a proangiogenic heparan sulfate endosulfatase, is upregulated in breast cancer.
Morimoto-Tomita M, Uchimura K, Bistrup A, Lum DH, Egeblad M, Boudreau N, Werb Z, Rosen SD., Neoplasia 7(11), 2005
PMID: 16331886
Vision-limiting complications in open-globe injuries.
Thakker MM, Ray S., Can. J. Ophthalmol. 41(1), 2006
PMID: 16462880
Substrate specificity and domain functions of extracellular heparan sulfate 6-O-endosulfatases, QSulf1 and QSulf2.
Ai X, Do AT, Kusche-Gullberg M, Lindahl U, Lu K, Emerson CP Jr., J. Biol. Chem. 281(8), 2005
PMID: 16377625
Aquaporin-3-dependent cell migration and proliferation during corneal re-epithelialization.
Levin MH, Verkman AS., Invest. Ophthalmol. Vis. Sci. 47(10), 2006
PMID: 17003427
The molecular diversity of glycosaminoglycans shapes animal development.
Bulow HE, Hobert O., Annu. Rev. Cell Dev. Biol. 22(), 2006
PMID: 16805665
Heparan sulfate 6-O-endosulfatases: discrete in vivo activities and functional co-operativity.
Lamanna WC, Baldwin RJ, Padva M, Kalus I, Ten Dam G, van Kuppevelt TH, Gallagher JT, von Figura K, Dierks T, Merry CL., Biochem. J. 400(1), 2006
PMID: 16901266
Gene trap disruption of the mouse heparan sulfate 6-O-endosulfatase gene, Sulf2.
Lum DH, Tan J, Rosen SD, Werb Z., Mol. Cell. Biol. 27(2), 2006
PMID: 17116694
The role of the slug transcription factor in cell migration during corneal re-epithelialization in the dog.
Chandler HL, Colitz CM, Lu P, Saville WJ, Kusewitt DF., Exp. Eye Res. 84(3), 2006
PMID: 17196588
Sulfatase 2 up-regulates glypican 3, promotes fibroblast growth factor signaling, and decreases survival in hepatocellular carcinoma.
Lai JP, Sandhu DS, Yu C, Han T, Moser CD, Jackson KK, Guerrero RB, Aderca I, Isomoto H, Garrity-Park MM, Zou H, Shire AM, Nagorney DM, Sanderson SO, Adjei AA, Lee JS, Thorgeirsson SS, Roberts LR., Hepatology 47(4), 2008
PMID: 18318435
Extracellular regulation of developmental cell signaling by XtSulf1.
Freeman SD, Moore WM, Guiral EC, Holme AD, Turnbull JE, Pownall ME., Dev. Biol. 320(2), 2008
PMID: 18617162
Interactions between heparan sulfate and proteins-design and functional implications.
Lindahl U, Li JP., Int Rev Cell Mol Biol 276(), 2009
PMID: 19584012
Heparan sulfate proteoglycans: structure, protein interactions and cell signaling.
Dreyfuss JL, Regatieri CV, Jarrouge TR, Cavalheiro RP, Sampaio LO, Nader HB., An. Acad. Bras. Cienc. 81(3), 2009
PMID: 19722012
Epithelial-mesenchymal transitions in development and disease.
Thiery JP, Acloque H, Huang RY, Nieto MA., Cell 139(5), 2009
PMID: 19945376
Direct detection of HSulf-1 and HSulf-2 activities on extracellular heparan sulfate and their inhibition by PI-88.
Hossain MM, Hosono-Fukao T, Tang R, Sugaya N, van Kuppevelt TH, Jenniskens GJ, Kimata K, Rosen SD, Uchimura K., Glycobiology 20(2), 2009
PMID: 19822709
Growth factors and corneal epithelial wound healing.
Yu FS, Yin J, Xu K, Huang J., Brain Res. Bull. 81(2-3), 2009
PMID: 19733636
Sulf-2, a heparan sulfate endosulfatase, promotes human lung carcinogenesis.
Lemjabbar-Alaoui H, van Zante A, Singer MS, Xue Q, Wang YQ, Tsay D, He B, Jablons DM, Rosen SD., Oncogene 29(5), 2009
PMID: 19855436
Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling.
Heuberger J, Birchmeier W., Cold Spring Harb Perspect Biol 2(2), 2010
PMID: 20182623
Differential involvement of the extracellular 6-O-endosulfatases Sulf1 and Sulf2 in brain development and neuronal and behavioural plasticity.
Kalus I, Salmen B, Viebahn C, von Figura K, Schmitz D, D'Hooge R, Dierks T., J. Cell. Mol. Med. 13(11-12), 2009
PMID: 20394677
The heparin-binding domain of HB-EGF mediates localization to sites of cell-cell contact and prevents HB-EGF proteolytic release.
Prince RN, Schreiter ER, Zou P, Wiley HS, Ting AY, Lee RT, Lauffenburger DA., J. Cell. Sci. 123(Pt 13), 2010
PMID: 20530570
Corneal morphogenesis during development and wound healing.
Kao WW, Liu CY., Jpn. J. Ophthalmol. 54(3), 2010
PMID: 20577853

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23950901
PubMed | Europe PMC

Suchen in

Google Scholar