Multiple imputation of incomplete ordinary and overdispersed count data
Kleinke K, de Jong R, Spiess M, Reinecke J (2011) .
Report | Englisch
Download
Autor*in
Abstract / Bemerkung
Throughout the last couple of years multiple imputation (MI) has become a popular and widely accepted method to address the missing data problem. However, MI solutions for incomplete count data are still not available in most statistical packages. We present count data imputation add-ons for the popular mice software in R (van
Buuren & Groothuis-Oudshoorn, 2011). Our add-on functions allow to create multiple imputations of incomplete ordinary and overdispersed count data following the chained equations approach of creating multiple imputations (cf. Raghunathan, Lepkowski, van Hoewyk, & Solenberger, 2001; van Buuren & Groothuis-Oudshoorn, 2011). We furthermore present evaluations of these solutions regarding their ability to produce unbiased parameter estimates and standard errors as well as their ability to cope with missing not at random mechanisms.
Erscheinungsjahr
2011
Page URI
https://pub.uni-bielefeld.de/record/2622022
Zitieren
Kleinke K, de Jong R, Spiess M, Reinecke J. Multiple imputation of incomplete ordinary and overdispersed count data.; 2011.
Kleinke, K., de Jong, R., Spiess, M., & Reinecke, J. (2011). Multiple imputation of incomplete ordinary and overdispersed count data.
Kleinke, Kristian, de Jong, Roel, Spiess, Martin, and Reinecke, Jost. 2011. Multiple imputation of incomplete ordinary and overdispersed count data.
Kleinke, K., de Jong, R., Spiess, M., and Reinecke, J. (2011). Multiple imputation of incomplete ordinary and overdispersed count data.
Kleinke, K., et al., 2011. Multiple imputation of incomplete ordinary and overdispersed count data,
K. Kleinke, et al., Multiple imputation of incomplete ordinary and overdispersed count data, 2011.
Kleinke, K., de Jong, R., Spiess, M., Reinecke, J.: Multiple imputation of incomplete ordinary and overdispersed count data. (2011).
Kleinke, Kristian, de Jong, Roel, Spiess, Martin, and Reinecke, Jost. Multiple imputation of incomplete ordinary and overdispersed count data. 2011.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:18Z
MD5 Prüfsumme
4145d226c02929aa1549e26f6fddde6a
Link(s) zu Volltext(en)
Access Level
Closed Access