Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ɛ-caprolactone

Staudt S, Bornscheuer UT, Menyes U, Hummel W, Gröger H (2013)
Enzyme and microbial technology 53(4): 288-292.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Staudt, Svenja; Bornscheuer, Uwe T; Menyes, Ulf; Hummel, WernerUniBi; Gröger, HaraldUniBi
Abstract / Bemerkung
The development of a biocatalytic process concept for ɛ-caprolactone, which directly converts cyclohexanol as an easily available industrial raw material into the desired ɛ-caprolactone in a one-pot fashion while only requiring air as sole reagent, is reported. The desired product ɛ-caprolactone was obtained with 94-97% conversion when operating at a substrate concentration in the range of 20-60mM. At higher substrate concentrations, however, a significant drop of conversion was found. Subsequent detailed studies on the impact of the starting material, intermediate and product components revealed a significant inhibition and partial deactivation of the BVMO by the product ɛ-caprolactone (in particular at higher concentrations) as well as an inhibition of the BVMO by cyclohexanol and cyclohexanone.
Erscheinungsjahr
2013
Zeitschriftentitel
Enzyme and microbial technology
Band
53
Ausgabe
4
Seite(n)
288-292
ISSN
0141-0229
Page URI
https://pub.uni-bielefeld.de/record/2621177

Zitieren

Staudt S, Bornscheuer UT, Menyes U, Hummel W, Gröger H. Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ɛ-caprolactone. Enzyme and microbial technology. 2013;53(4):288-292.
Staudt, S., Bornscheuer, U. T., Menyes, U., Hummel, W., & Gröger, H. (2013). Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ɛ-caprolactone. Enzyme and microbial technology, 53(4), 288-292. doi:10.1016/j.enzmictec.2013.03.011
Staudt, Svenja, Bornscheuer, Uwe T, Menyes, Ulf, Hummel, Werner, and Gröger, Harald. 2013. “Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ɛ-caprolactone”. Enzyme and microbial technology 53 (4): 288-292.
Staudt, S., Bornscheuer, U. T., Menyes, U., Hummel, W., and Gröger, H. (2013). Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ɛ-caprolactone. Enzyme and microbial technology 53, 288-292.
Staudt, S., et al., 2013. Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ɛ-caprolactone. Enzyme and microbial technology, 53(4), p 288-292.
S. Staudt, et al., “Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ɛ-caprolactone”, Enzyme and microbial technology, vol. 53, 2013, pp. 288-292.
Staudt, S., Bornscheuer, U.T., Menyes, U., Hummel, W., Gröger, H.: Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ɛ-caprolactone. Enzyme and microbial technology. 53, 288-292 (2013).
Staudt, Svenja, Bornscheuer, Uwe T, Menyes, Ulf, Hummel, Werner, and Gröger, Harald. “Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ɛ-caprolactone”. Enzyme and microbial technology 53.4 (2013): 288-292.

18 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Biocatalytic conversion of cycloalkanes to lactones using an in-vivo cascade in Pseudomonas taiwanensis VLB120.
Karande R, Salamanca D, Schmid A, Buehler K., Biotechnol Bioeng 115(2), 2018
PMID: 28986995
Biocatalytic synthesis of lactones and lactams.
Hollmann F, Kara S, Opperman DJ, Wang Y., Chem Asian J 13(23), 2018
PMID: 30256534
Kinetic insights into ϵ-caprolactone synthesis: Improvement of an enzymatic cascade reaction.
Scherkus C, Schmidt S, Bornscheuer UT, Gröger H, Kara S, Liese A., Biotechnol Bioeng 114(6), 2017
PMID: 28112389
Fungal BVMOs as alternatives to cyclohexanone monooxygenase.
Mthethwa KS, Kassier K, Engel J, Kara S, Smit MS, Opperman DJ., Enzyme Microb Technol 106(), 2017
PMID: 28859804
Biocatalytic hydrogen-borrowing cascades.
Knaus T, Mutti FG., Chim Oggi 35(5), 2017
PMID: 29515288
Baeyer-Villiger oxidations: biotechnological approach.
Bučko M, Gemeiner P, Schenkmayerová A, Krajčovič T, Rudroff F, Mihovilovič MD., Appl Microbiol Biotechnol 100(15), 2016
PMID: 27328941
An enzyme cascade synthesis of ε-caprolactone and its oligomers.
Schmidt S, Scherkus C, Muschiol J, Menyes U, Winkler T, Hummel W, Gröger H, Liese A, Herz HG, Bornscheuer UT., Angew Chem Int Ed Engl 54(9), 2015
PMID: 25597635
Enzyme fusion for whole-cell biotransformation of long-chain sec-alcohols into esters.
Jeon EY, Baek AH, Bornscheuer UT, Park JB., Appl Microbiol Biotechnol 99(15), 2015
PMID: 25636834
Cascade catalysis--strategies and challenges en route to preparative synthetic biology.
Muschiol J, Peters C, Oberleitner N, Mihovilovic MD, Bornscheuer UT, Rudroff F., Chem Commun (Camb) 51(27), 2015
PMID: 25654472
Recent trends and novel concepts in cofactor-dependent biotransformations.
Kara S, Schrittwieser JH, Hollmann F, Ansorge-Schumacher MB., Appl Microbiol Biotechnol 98(4), 2014
PMID: 24362856
Stabilization of cyclohexanone monooxygenase by a computationally designed disulfide bond spanning only one residue.
van Beek HL, Wijma HJ, Fromont L, Janssen DB, Fraaije MW., FEBS Open Bio 4(), 2014
PMID: 24649397
Insights in the kinetic mechanism of the eukaryotic Baeyer-Villiger monooxygenase BVMOAf1 from Aspergillus fumigatus Af293.
Mascotti ML, Kurina-Sanz M, Juri Ayub M, Fraaije MW., Biochimie 107 Pt B(), 2014
PMID: 25230086
Synthesis of methyl propanoate by Baeyer-Villiger monooxygenases.
van Beek HL, Winter RT, Eastham GR, Fraaije MW., Chem Commun (Camb) 50(86), 2014
PMID: 25227202
Introducing an in situ capping strategy in systems biocatalysis to access 6-aminohexanoic acid.
Sattler JH, Fuchs M, Mutti FG, Grischek B, Engel P, Pfeffer J, Woodley JM, Kroutil W., Angew Chem Int Ed Engl 53(51), 2014
PMID: 25366462

14 References

Daten bereitgestellt von Europe PubMed Central.

Synthesis of polycaprolactone: a review.
Labet M, Thielemans W., Chem Soc Rev 38(12), 2009
PMID: 20449064

Weissermel, 2003
Discovery, application and protein engineering of Baeyer-Villiger monooxygenases for organic synthesis.
Balke K, Kadow M, Mallin H, Sass S, Bornscheuer UT., Org. Biomol. Chem. 10(31), 2012
PMID: 22733152
Baeyer–Villiger oxidations
Mihovilovic, 2012
Recent developments in the application of Baeyer-Villiger monooxygenases as biocatalysts.
de Gonzalo G, Mihovilovic MD, Fraaije MW., Chembiochem 11(16), 2010
PMID: 20936617
Extensive substrate profiling of cyclopentadecanone monooxygenase as Baeyer–Villiger biocatalyst reveals novel regiodivergent oxidations
Fink, Journal of Molecular Catalysis B: Enzymatic 73(), 2011
Scale-up of Baeyer-Villiger monooxygenase-catalyzed synthesis of enantiopure compounds.
Geitner K, Rehdorf J, Snajdrova R, Bornscheuer UT., Appl. Microbiol. Biotechnol. 88(5), 2010
PMID: 20689951
Exploiting the regioselectivity of Baeyer–Villiger monooxygenases for the formation of β-amino acids and β-amino alcohols
Rehdorf, Angewandte Chemie International Edition 49(), 2010
Efficient biooxidations catalyzed by a new generation of self-sufficient Baeyer-Villiger monooxygenases.
Torres Pazmino DE, Riebel A, de Lange J, Rudroff F, Mihovilovic MD, Fraaije MW., Chembiochem 10(16), 2009
PMID: 19795432
Kinetic resolution of 4-hydroxy-2-ketones catalyzed by a Baeyer–Villiger monooxygenase
Kirschner, Angewandte Chemie International Edition 45(), 2006
Biotransformation of endo-bicyclo[2.2.1]heptan-2-ols and endo-bicyclo[3.2.0]hept-2-en-6-ol into the corresponding lactones
Willetts, Journal of the Chemical Society-Perkin Transactions 1(), 1991

AUTHOR UNKNOWN, 0
Cloning, expression, and characterization of an (R)-specific alcohol dehydrogenase from Lactobacillus kefir
Weckbecker, Biocatalysis and Biotransformation 24(), 2006
Reduction of ketones and aldehydes to alcohols
Gröger, 2012
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23931696
PubMed | Europe PMC

Suchen in

Google Scholar