Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ɛ-caprolactone
Staudt S, Bornscheuer UT, Menyes U, Hummel W, Gröger H (2013)
Enzyme and microbial technology 53(4): 288-292.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Staudt, Svenja;
Bornscheuer, Uwe T;
Menyes, Ulf;
Hummel, WernerUniBi;
Gröger, HaraldUniBi
Abstract / Bemerkung
The development of a biocatalytic process concept for ɛ-caprolactone, which directly converts cyclohexanol as an easily available industrial raw material into the desired ɛ-caprolactone in a one-pot fashion while only requiring air as sole reagent, is reported. The desired product ɛ-caprolactone was obtained with 94-97% conversion when operating at a substrate concentration in the range of 20-60mM. At higher substrate concentrations, however, a significant drop of conversion was found. Subsequent detailed studies on the impact of the starting material, intermediate and product components revealed a significant inhibition and partial deactivation of the BVMO by the product ɛ-caprolactone (in particular at higher concentrations) as well as an inhibition of the BVMO by cyclohexanol and cyclohexanone.
Erscheinungsjahr
2013
Zeitschriftentitel
Enzyme and microbial technology
Band
53
Ausgabe
4
Seite(n)
288-292
ISSN
0141-0229
Page URI
https://pub.uni-bielefeld.de/record/2621177
Zitieren
Staudt S, Bornscheuer UT, Menyes U, Hummel W, Gröger H. Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ɛ-caprolactone. Enzyme and microbial technology. 2013;53(4):288-292.
Staudt, S., Bornscheuer, U. T., Menyes, U., Hummel, W., & Gröger, H. (2013). Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ɛ-caprolactone. Enzyme and microbial technology, 53(4), 288-292. doi:10.1016/j.enzmictec.2013.03.011
Staudt, Svenja, Bornscheuer, Uwe T, Menyes, Ulf, Hummel, Werner, and Gröger, Harald. 2013. “Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ɛ-caprolactone”. Enzyme and microbial technology 53 (4): 288-292.
Staudt, S., Bornscheuer, U. T., Menyes, U., Hummel, W., and Gröger, H. (2013). Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ɛ-caprolactone. Enzyme and microbial technology 53, 288-292.
Staudt, S., et al., 2013. Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ɛ-caprolactone. Enzyme and microbial technology, 53(4), p 288-292.
S. Staudt, et al., “Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ɛ-caprolactone”, Enzyme and microbial technology, vol. 53, 2013, pp. 288-292.
Staudt, S., Bornscheuer, U.T., Menyes, U., Hummel, W., Gröger, H.: Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ɛ-caprolactone. Enzyme and microbial technology. 53, 288-292 (2013).
Staudt, Svenja, Bornscheuer, Uwe T, Menyes, Ulf, Hummel, Werner, and Gröger, Harald. “Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ɛ-caprolactone”. Enzyme and microbial technology 53.4 (2013): 288-292.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
18 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Native roles of Baeyer-Villiger monooxygenases in the microbial metabolism of natural compounds.
Tolmie C, Smit MS, Opperman DJ., Nat Prod Rep 36(2), 2019
PMID: 30074603
Tolmie C, Smit MS, Opperman DJ., Nat Prod Rep 36(2), 2019
PMID: 30074603
Biocatalytic conversion of cycloalkanes to lactones using an in-vivo cascade in Pseudomonas taiwanensis VLB120.
Karande R, Salamanca D, Schmid A, Buehler K., Biotechnol Bioeng 115(2), 2018
PMID: 28986995
Karande R, Salamanca D, Schmid A, Buehler K., Biotechnol Bioeng 115(2), 2018
PMID: 28986995
Biocatalytic synthesis of lactones and lactams.
Hollmann F, Kara S, Opperman DJ, Wang Y., Chem Asian J 13(23), 2018
PMID: 30256534
Hollmann F, Kara S, Opperman DJ, Wang Y., Chem Asian J 13(23), 2018
PMID: 30256534
Kinetic insights into ϵ-caprolactone synthesis: Improvement of an enzymatic cascade reaction.
Scherkus C, Schmidt S, Bornscheuer UT, Gröger H, Kara S, Liese A., Biotechnol Bioeng 114(6), 2017
PMID: 28112389
Scherkus C, Schmidt S, Bornscheuer UT, Gröger H, Kara S, Liese A., Biotechnol Bioeng 114(6), 2017
PMID: 28112389
Fungal BVMOs as alternatives to cyclohexanone monooxygenase.
Mthethwa KS, Kassier K, Engel J, Kara S, Smit MS, Opperman DJ., Enzyme Microb Technol 106(), 2017
PMID: 28859804
Mthethwa KS, Kassier K, Engel J, Kara S, Smit MS, Opperman DJ., Enzyme Microb Technol 106(), 2017
PMID: 28859804
Coupled reactions by coupled enzymes: alcohol to lactone cascade with alcohol dehydrogenase-cyclohexanone monooxygenase fusions.
Aalbers FS, Fraaije MW., Appl Microbiol Biotechnol 101(20), 2017
PMID: 28916997
Aalbers FS, Fraaije MW., Appl Microbiol Biotechnol 101(20), 2017
PMID: 28916997
High-Throughput Feasible Screening Tool for Determining Enzyme Stabilities against Organic Solvents Directly from Crude Extracts.
Wedde S, Kleusch C, Bakonyi D, Gröger H., Chembiochem 18(24), 2017
PMID: 29024398
Wedde S, Kleusch C, Bakonyi D, Gröger H., Chembiochem 18(24), 2017
PMID: 29024398
Baeyer-Villiger oxidations: biotechnological approach.
Bučko M, Gemeiner P, Schenkmayerová A, Krajčovič T, Rudroff F, Mihovilovič MD., Appl Microbiol Biotechnol 100(15), 2016
PMID: 27328941
Bučko M, Gemeiner P, Schenkmayerová A, Krajčovič T, Rudroff F, Mihovilovič MD., Appl Microbiol Biotechnol 100(15), 2016
PMID: 27328941
An enzyme cascade synthesis of ε-caprolactone and its oligomers.
Schmidt S, Scherkus C, Muschiol J, Menyes U, Winkler T, Hummel W, Gröger H, Liese A, Herz HG, Bornscheuer UT., Angew Chem Int Ed Engl 54(9), 2015
PMID: 25597635
Schmidt S, Scherkus C, Muschiol J, Menyes U, Winkler T, Hummel W, Gröger H, Liese A, Herz HG, Bornscheuer UT., Angew Chem Int Ed Engl 54(9), 2015
PMID: 25597635
Enzyme fusion for whole-cell biotransformation of long-chain sec-alcohols into esters.
Jeon EY, Baek AH, Bornscheuer UT, Park JB., Appl Microbiol Biotechnol 99(15), 2015
PMID: 25636834
Jeon EY, Baek AH, Bornscheuer UT, Park JB., Appl Microbiol Biotechnol 99(15), 2015
PMID: 25636834
Cascade catalysis--strategies and challenges en route to preparative synthetic biology.
Muschiol J, Peters C, Oberleitner N, Mihovilovic MD, Bornscheuer UT, Rudroff F., Chem Commun (Camb) 51(27), 2015
PMID: 25654472
Muschiol J, Peters C, Oberleitner N, Mihovilovic MD, Bornscheuer UT, Rudroff F., Chem Commun (Camb) 51(27), 2015
PMID: 25654472
Directed evolution of phenylacetone monooxygenase as an active catalyst for the Baeyer-Villiger conversion of cyclohexanone to caprolactone.
Parra LP, Acevedo JP, Reetz MT., Biotechnol Bioeng 112(7), 2015
PMID: 25675885
Parra LP, Acevedo JP, Reetz MT., Biotechnol Bioeng 112(7), 2015
PMID: 25675885
Recent trends and novel concepts in cofactor-dependent biotransformations.
Kara S, Schrittwieser JH, Hollmann F, Ansorge-Schumacher MB., Appl Microbiol Biotechnol 98(4), 2014
PMID: 24362856
Kara S, Schrittwieser JH, Hollmann F, Ansorge-Schumacher MB., Appl Microbiol Biotechnol 98(4), 2014
PMID: 24362856
Stabilization of cyclohexanone monooxygenase by a computationally designed disulfide bond spanning only one residue.
van Beek HL, Wijma HJ, Fromont L, Janssen DB, Fraaije MW., FEBS Open Bio 4(), 2014
PMID: 24649397
van Beek HL, Wijma HJ, Fromont L, Janssen DB, Fraaije MW., FEBS Open Bio 4(), 2014
PMID: 24649397
Insights in the kinetic mechanism of the eukaryotic Baeyer-Villiger monooxygenase BVMOAf1 from Aspergillus fumigatus Af293.
Mascotti ML, Kurina-Sanz M, Juri Ayub M, Fraaije MW., Biochimie 107 Pt B(), 2014
PMID: 25230086
Mascotti ML, Kurina-Sanz M, Juri Ayub M, Fraaije MW., Biochimie 107 Pt B(), 2014
PMID: 25230086
Synthesis of methyl propanoate by Baeyer-Villiger monooxygenases.
van Beek HL, Winter RT, Eastham GR, Fraaije MW., Chem Commun (Camb) 50(86), 2014
PMID: 25227202
van Beek HL, Winter RT, Eastham GR, Fraaije MW., Chem Commun (Camb) 50(86), 2014
PMID: 25227202
Introducing an in situ capping strategy in systems biocatalysis to access 6-aminohexanoic acid.
Sattler JH, Fuchs M, Mutti FG, Grischek B, Engel P, Pfeffer J, Woodley JM, Kroutil W., Angew Chem Int Ed Engl 53(51), 2014
PMID: 25366462
Sattler JH, Fuchs M, Mutti FG, Grischek B, Engel P, Pfeffer J, Woodley JM, Kroutil W., Angew Chem Int Ed Engl 53(51), 2014
PMID: 25366462
14 References
Daten bereitgestellt von Europe PubMed Central.
Synthesis of polycaprolactone: a review.
Labet M, Thielemans W., Chem Soc Rev 38(12), 2009
PMID: 20449064
Labet M, Thielemans W., Chem Soc Rev 38(12), 2009
PMID: 20449064
Weissermel, 2003
Discovery, application and protein engineering of Baeyer-Villiger monooxygenases for organic synthesis.
Balke K, Kadow M, Mallin H, Sass S, Bornscheuer UT., Org. Biomol. Chem. 10(31), 2012
PMID: 22733152
Balke K, Kadow M, Mallin H, Sass S, Bornscheuer UT., Org. Biomol. Chem. 10(31), 2012
PMID: 22733152
Baeyer–Villiger oxidations
Mihovilovic, 2012
Mihovilovic, 2012
Recent developments in the application of Baeyer-Villiger monooxygenases as biocatalysts.
de Gonzalo G, Mihovilovic MD, Fraaije MW., Chembiochem 11(16), 2010
PMID: 20936617
de Gonzalo G, Mihovilovic MD, Fraaije MW., Chembiochem 11(16), 2010
PMID: 20936617
Extensive substrate profiling of cyclopentadecanone monooxygenase as Baeyer–Villiger biocatalyst reveals novel regiodivergent oxidations
Fink, Journal of Molecular Catalysis B: Enzymatic 73(), 2011
Fink, Journal of Molecular Catalysis B: Enzymatic 73(), 2011
Scale-up of Baeyer-Villiger monooxygenase-catalyzed synthesis of enantiopure compounds.
Geitner K, Rehdorf J, Snajdrova R, Bornscheuer UT., Appl. Microbiol. Biotechnol. 88(5), 2010
PMID: 20689951
Geitner K, Rehdorf J, Snajdrova R, Bornscheuer UT., Appl. Microbiol. Biotechnol. 88(5), 2010
PMID: 20689951
Exploiting the regioselectivity of Baeyer–Villiger monooxygenases for the formation of β-amino acids and β-amino alcohols
Rehdorf, Angewandte Chemie International Edition 49(), 2010
Rehdorf, Angewandte Chemie International Edition 49(), 2010
Efficient biooxidations catalyzed by a new generation of self-sufficient Baeyer-Villiger monooxygenases.
Torres Pazmino DE, Riebel A, de Lange J, Rudroff F, Mihovilovic MD, Fraaije MW., Chembiochem 10(16), 2009
PMID: 19795432
Torres Pazmino DE, Riebel A, de Lange J, Rudroff F, Mihovilovic MD, Fraaije MW., Chembiochem 10(16), 2009
PMID: 19795432
Kinetic resolution of 4-hydroxy-2-ketones catalyzed by a Baeyer–Villiger monooxygenase
Kirschner, Angewandte Chemie International Edition 45(), 2006
Kirschner, Angewandte Chemie International Edition 45(), 2006
Biotransformation of endo-bicyclo[2.2.1]heptan-2-ols and endo-bicyclo[3.2.0]hept-2-en-6-ol into the corresponding lactones
Willetts, Journal of the Chemical Society-Perkin Transactions 1(), 1991
Willetts, Journal of the Chemical Society-Perkin Transactions 1(), 1991
AUTHOR UNKNOWN, 0
Cloning, expression, and characterization of an (R)-specific alcohol dehydrogenase from Lactobacillus kefir
Weckbecker, Biocatalysis and Biotransformation 24(), 2006
Weckbecker, Biocatalysis and Biotransformation 24(), 2006
Reduction of ketones and aldehydes to alcohols
Gröger, 2012
Gröger, 2012
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 23931696
PubMed | Europe PMC
Suchen in