Passive joint forces are tuned to limb use in insects and drive movements without motor activity
Ache JM, Matheson T (2013)
Current Biology 23(15): 1418-1426.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Ache, Jan MarekUniBi;
Matheson, Thomas
Einrichtung
Abstract / Bemerkung
Background: Limb movements are generally driven by active
muscular contractions working with and against passive
forces arising in muscles and other structures. In relatively
heavy limbs, the effects of gravity and inertia predominate,
whereas in lighter limbs, passive forces intrinsic to the limb
are of greater consequence. The roles of passive forces generated
by muscles and tendons are well understood, but there
has been little recognition that forces originating within joints
themselves may also be important, and less still that these
joint forces may be adapted through evolution to complement
active muscle forces acting at the same joint.
Results: We examined the roles of passive joint forces in
insect legs with different arrangements of antagonist muscles.
We first show that passive forces modify actively generated
movements of a joint across its working range, and that they
can be sufficiently strong to generate completely passive
movements that are faster than active movements observed
in natural behaviors. We further demonstrate that some of
these forces originate within the joint itself. In legs of different
species adapted to different uses (walking, jumping), these
passive joint forces complement the balance of strength of
the antagonist muscles acting on the joint. We show that
passive joint forces are stronger where they assist the weaker
of two antagonist muscles.
Conclusions: In limbs where the dictates of a key behavior
produce asymmetry in muscle forces, passive joint forces
can be coadapted to provide the balance needed for the effective
generation of other behaviors.
Erscheinungsjahr
2013
Zeitschriftentitel
Current Biology
Band
23
Ausgabe
15
Seite(n)
1418-1426
ISSN
0960-9822
Page URI
https://pub.uni-bielefeld.de/record/2616586
Zitieren
Ache JM, Matheson T. Passive joint forces are tuned to limb use in insects and drive movements without motor activity. Current Biology. 2013;23(15):1418-1426.
Ache, J. M., & Matheson, T. (2013). Passive joint forces are tuned to limb use in insects and drive movements without motor activity. Current Biology, 23(15), 1418-1426. doi:10.1016/j.cub.2013.06.024
Ache, Jan Marek, and Matheson, Thomas. 2013. “Passive joint forces are tuned to limb use in insects and drive movements without motor activity”. Current Biology 23 (15): 1418-1426.
Ache, J. M., and Matheson, T. (2013). Passive joint forces are tuned to limb use in insects and drive movements without motor activity. Current Biology 23, 1418-1426.
Ache, J.M., & Matheson, T., 2013. Passive joint forces are tuned to limb use in insects and drive movements without motor activity. Current Biology, 23(15), p 1418-1426.
J.M. Ache and T. Matheson, “Passive joint forces are tuned to limb use in insects and drive movements without motor activity”, Current Biology, vol. 23, 2013, pp. 1418-1426.
Ache, J.M., Matheson, T.: Passive joint forces are tuned to limb use in insects and drive movements without motor activity. Current Biology. 23, 1418-1426 (2013).
Ache, Jan Marek, and Matheson, Thomas. “Passive joint forces are tuned to limb use in insects and drive movements without motor activity”. Current Biology 23.15 (2013): 1418-1426.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
10 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Speed dependent phase shifts and gait changes in cockroaches running on substrates of different slipperiness.
Weihmann T, Brun PG, Pycroft E., Front Zool 14(), 2017
PMID: 29225659
Weihmann T, Brun PG, Pycroft E., Front Zool 14(), 2017
PMID: 29225659
Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control.
Dallmann CJ, Dürr V, Schmitz J., Proc Biol Sci 283(1823), 2016
PMID: 26791608
Dallmann CJ, Dürr V, Schmitz J., Proc Biol Sci 283(1823), 2016
PMID: 26791608
Structure and function of the elastic organ in the tibia of a tenebrionid beetle.
Ichikawa T, Toh Y, Sakamoto H., Naturwissenschaften 103(5-6), 2016
PMID: 27118185
Ichikawa T, Toh Y, Sakamoto H., Naturwissenschaften 103(5-6), 2016
PMID: 27118185
Mechanosensation and Adaptive Motor Control in Insects.
Tuthill JC, Wilson RI., Curr Biol 26(20), 2016
PMID: 27780045
Tuthill JC, Wilson RI., Curr Biol 26(20), 2016
PMID: 27780045
Motor inhibition affects the speed but not accuracy of aimed limb movements in an insect.
Calas-List D, Clare AJ, Komissarova A, Nielsen TA, Matheson T., J Neurosci 34(22), 2014
PMID: 24872556
Calas-List D, Clare AJ, Komissarova A, Nielsen TA, Matheson T., J Neurosci 34(22), 2014
PMID: 24872556
Role of a looming-sensitive neuron in triggering the defense behavior of the praying mantis Tenodera aridifolia.
Sato K, Yamawaki Y., J Neurophysiol 112(3), 2014
PMID: 24848471
Sato K, Yamawaki Y., J Neurophysiol 112(3), 2014
PMID: 24848471
WITHDRAWN: Positive force feedback in development of substrate grip in the stick insect tarsus.
Zill SN, Chaudhry S, Exter A, Büschges A, Schmitz J., Arthropod Struct Dev (), 2014
PMID: 24904979
Zill SN, Chaudhry S, Exter A, Büschges A, Schmitz J., Arthropod Struct Dev (), 2014
PMID: 24904979
Positive force feedback in development of substrate grip in the stick insect tarsus.
Zill SN, Chaudhry S, Exter A, Büschges A, Schmitz J., Arthropod Struct Dev 43(5), 2014
PMID: 24951882
Zill SN, Chaudhry S, Exter A, Büschges A, Schmitz J., Arthropod Struct Dev 43(5), 2014
PMID: 24951882
Animal biomechanics: a new silent partner in the control of motion.
Sutton GP., Curr Biol 23(15), 2013
PMID: 23928081
Sutton GP., Curr Biol 23(15), 2013
PMID: 23928081
44 References
Daten bereitgestellt von Europe PubMed Central.
Elasticity and movements of the cockroach tarsus in walking
Frazier F., Larsen G.S., Neff D., Quimby L., Carney M., DiCaprio R.A., Zill S.N.., 1999
Frazier F., Larsen G.S., Neff D., Quimby L., Carney M., DiCaprio R.A., Zill S.N.., 1999
Templates and anchors: neuromechanical hypotheses of legged locomotion on land.
Full RJ, Koditschek DE., J. Exp. Biol. 202(Pt 23), 1999
PMID: 10562515
Full RJ, Koditschek DE., J. Exp. Biol. 202(Pt 23), 1999
PMID: 10562515
Co-contraction and passive forces facilitate load compensation of aimed limb movements.
Zakotnik J, Matheson T, Durr V., J. Neurosci. 26(19), 2006
PMID: 16687491
Zakotnik J, Matheson T, Durr V., J. Neurosci. 26(19), 2006
PMID: 16687491
Muscular force in running turkeys: the economy of minimizing work.
Roberts TJ, Marsh RL, Weyand PG, Taylor CR., Science 275(5303), 1997
PMID: 9027309
Roberts TJ, Marsh RL, Weyand PG, Taylor CR., Science 275(5303), 1997
PMID: 9027309
Motor control of aimed limb movements in an insect.
Page KL, Zakotnik J, Durr V, Matheson T., J. Neurophysiol. 99(2), 2007
PMID: 18032564
Page KL, Zakotnik J, Durr V, Matheson T., J. Neurophysiol. 99(2), 2007
PMID: 18032564
The role of intrinsic muscle mechanics in the neuromuscular control of stable running in the guinea fowl.
Daley MA, Voloshina A, Biewener AA., J. Physiol. (Lond.) 587(Pt 11), 2009
PMID: 19359369
Daley MA, Voloshina A, Biewener AA., J. Physiol. (Lond.) 587(Pt 11), 2009
PMID: 19359369
Neural control of unloaded leg posture and of leg swing in stick insect, cockroach, and mouse differs from that in larger animals.
Hooper SL, Guschlbauer C, Blumel M, Rosenbaum P, Gruhn M, Akay T, Buschges A., J. Neurosci. 29(13), 2009
PMID: 19339606
Hooper SL, Guschlbauer C, Blumel M, Rosenbaum P, Gruhn M, Akay T, Buschges A., J. Neurosci. 29(13), 2009
PMID: 19339606
Passive resting state and history of antagonist muscle activity shape active extensions in an insect limb.
Ache JM, Matheson T., J. Neurophysiol. 107(10), 2012
PMID: 22357791
Ache JM, Matheson T., J. Neurophysiol. 107(10), 2012
PMID: 22357791
Passive elastic properties of the rat ankle.
Wu MM, Pai DK, Tresch MC, Sandercock TG., J Biomech 45(9), 2012
PMID: 22520588
Wu MM, Pai DK, Tresch MC, Sandercock TG., J Biomech 45(9), 2012
PMID: 22520588
Static forces and moments generated in the insect leg: comparison of a three-dimensional musculo-skeletal computer model with experimental measurements
Full R, Ahn A., J. Exp. Biol. 198(Pt 6), 1995
PMID: 9319155
Full R, Ahn A., J. Exp. Biol. 198(Pt 6), 1995
PMID: 9319155
Passive mechanical properties of legs from running insects.
Dudek DM, Full RJ., J. Exp. Biol. 209(Pt 8), 2006
PMID: 16574808
Dudek DM, Full RJ., J. Exp. Biol. 209(Pt 8), 2006
PMID: 16574808
An isolated insect leg's passive recovery from dorso-ventral perturbations.
Dudek DM, Full RJ., J. Exp. Biol. 210(Pt 18), 2007
PMID: 17766298
Dudek DM, Full RJ., J. Exp. Biol. 210(Pt 18), 2007
PMID: 17766298
Neuromechanical response of musculo-skeletal structures in cockroaches during rapid running on rough terrain.
Sponberg S, Full RJ., J. Exp. Biol. 211(Pt 3), 2008
PMID: 18203999
Sponberg S, Full RJ., J. Exp. Biol. 211(Pt 3), 2008
PMID: 18203999
Storage of elastic strain energy in muscle and other tissues.
Alexander RM, Bennet-Clark HC., Nature 265(5590), 1977
PMID: 834252
Alexander RM, Bennet-Clark HC., Nature 265(5590), 1977
PMID: 834252
Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control.
Zajac FE., Crit Rev Biomed Eng 17(4), 1989
PMID: 2676342
Zajac FE., Crit Rev Biomed Eng 17(4), 1989
PMID: 2676342
The energetics of the jump of the locust Schistocerca gregaria.
Bennet-Clark HC., J. Exp. Biol. 63(1), 1975
PMID: 1159370
Bennet-Clark HC., J. Exp. Biol. 63(1), 1975
PMID: 1159370
Fast actions in small animals: springs and click mechanisms
Gronenberg W.., 1996
Gronenberg W.., 1996
From bouncy legs to poisoned arrows: elastic movements in invertebrates.
Patek SN, Dudek DM, Rosario MV., J. Exp. Biol. 214(Pt 12), 2011
PMID: 21613512
Patek SN, Dudek DM, Rosario MV., J. Exp. Biol. 214(Pt 12), 2011
PMID: 21613512
Passive dynamic walking
McGeer T.., 1990
McGeer T.., 1990
Efficient bipedal robots based on passive-dynamic walkers.
Collins S, Ruina A, Tedrake R, Wisse M., Science 307(5712), 2005
PMID: 15718465
Collins S, Ruina A, Tedrake R, Wisse M., Science 307(5712), 2005
PMID: 15718465
Zum Verhalten des Krallenbeugersystems bei der Stabheuschrecke Carausius morosus Br
Walther C.H.., 1969
Walther C.H.., 1969
Function of a muscle whose apodeme travels through a joint moved by other muscles: why the retractor unguis in stick insects is tripartite and has no antagonist
Radnikow G., Bässler U.., 1991
Radnikow G., Bässler U.., 1991
Identification of resilin in the leg of cockroach, Periplaneta americana: confirmation by a simple method using pH dependence of UV fluorescence.
Neff D, Frazier SF, Quimby L, Wang RT, Zill S., Arthropod Struct Dev 29(1), 2000
PMID: 18088915
Neff D, Frazier SF, Quimby L, Wang RT, Zill S., Arthropod Struct Dev 29(1), 2000
PMID: 18088915
Control of obstacle climbing in the cockroach, Blaberus discoidalis. I. Kinematics.
Watson JT, Ritzmann RE, Zill SN, Pollack AJ., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(1), 2002
PMID: 11935229
Watson JT, Ritzmann RE, Zill SN, Pollack AJ., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(1), 2002
PMID: 11935229
Burrows M.., 1996
Graded limb targeting in an insect is caused by the shift of a single movement pattern.
Durr V, Matheson T., J. Neurophysiol. 90(3), 2003
PMID: 12773499
Durr V, Matheson T., J. Neurophysiol. 90(3), 2003
PMID: 12773499
Hindleg targeting during scratching in the locust
Matheson T., J. Exp. Biol. 200(Pt 1), 1997
PMID: 9317404
Matheson T., J. Exp. Biol. 200(Pt 1), 1997
PMID: 9317404
Local control of leg movements and motor patterns during grooming in locusts.
Berkowitz A, Laurent G., J. Neurosci. 16(24), 1996
PMID: 8987832
Berkowitz A, Laurent G., J. Neurosci. 16(24), 1996
PMID: 8987832
The control of walking in Orthoptera: I. Leg movements in normal walking
Burns M.D.., 1973
Burns M.D.., 1973
AUTHOR UNKNOWN, 0
The locust jump
Heitler W.J.., 1974
Heitler W.J.., 1974
Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: II. Fast running.
Watson JT, Ritzmann RE., J. Comp. Physiol. A 182(1), 1998
PMID: 9447711
Watson JT, Ritzmann RE., J. Comp. Physiol. A 182(1), 1998
PMID: 9447711
A unified passivity-based control framework for position, torque and impedance control of flexible joint robots
Albu-Schäffer A., Ott C., Hirzinger G.., 2007
Albu-Schäffer A., Ott C., Hirzinger G.., 2007
A compact soft actuator for small scale human friendly robots
Tsagarakis N.G., Laffranchi M., Vanderborght B., Caldwell D.G.., 2009
Tsagarakis N.G., Laffranchi M., Vanderborght B., Caldwell D.G.., 2009
Physiologically based control laws featuring antagonistic muscle co-activation for stable compliant joint drives
Annunziata S., Schneider A.., 2012
Annunziata S., Schneider A.., 2012
Neuromechanical simulation of the locust jump.
Cofer D, Cymbalyuk G, Heitler WJ, Edwards DH., J. Exp. Biol. 213(Pt 7), 2010
PMID: 20228342
Cofer D, Cymbalyuk G, Heitler WJ, Edwards DH., J. Exp. Biol. 213(Pt 7), 2010
PMID: 20228342
Octopamine mediated relaxation of maintained and catch tension in locust skeletal muscle.
Evans PD, Siegler MV., J. Physiol. (Lond.) 324(), 1982
PMID: 6808122
Evans PD, Siegler MV., J. Physiol. (Lond.) 324(), 1982
PMID: 6808122
Activity patterns of inhibitory motor neurones and their impact on leg movements in tethered walking locusts
Wolf H.., 1990
Wolf H.., 1990
The kinematics and neural control of high-speed kicking movements in the locust.
Burrows M, Morris G., J. Exp. Biol. 204(Pt 20), 2001
PMID: 11707497
Burrows M, Morris G., J. Exp. Biol. 204(Pt 20), 2001
PMID: 11707497
A buckling region in locust hindlegs contains resilin and absorbs energy when jumping or kicking goes wrong.
Bayley TG, Sutton GP, Burrows M., J. Exp. Biol. 215(Pt 7), 2012
PMID: 22399660
Bayley TG, Sutton GP, Burrows M., J. Exp. Biol. 215(Pt 7), 2012
PMID: 22399660
The locust jump. III. Structural specializations of the metathoracic tibiae
Heitler W.J.., 1977
Heitler W.J.., 1977
On the anatomy and mechanism of motion of the mesothoracic leg of Periplaneta americana
Dresden D., Nijenhuis E.D.., 1953
Dresden D., Nijenhuis E.D.., 1953
The femur-tibia control system in a proscopiid (Caelifera, Orthoptera): a test for assumptions on the functional basis and evolution of twig mimesis in stick insects.
Wolf H, Bassler U, Spiess R, Kittmann R., J. Exp. Biol. 204(Pt 22), 2001
PMID: 11807100
Wolf H, Bassler U, Spiess R, Kittmann R., J. Exp. Biol. 204(Pt 22), 2001
PMID: 11807100
Jumping and kicking in the false stick insect Prosarthria teretrirostris: kinematics and motor control.
Burrows M, Wolf H., J. Exp. Biol. 205(Pt 11), 2002
PMID: 12000798
Burrows M, Wolf H., J. Exp. Biol. 205(Pt 11), 2002
PMID: 12000798
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 23871240
PubMed | Europe PMC
Suchen in