Conformational Properties of Secondary Amino Acids: Replacement of Pipecolic Acid by N-Methyl-L-alanine in Efrapeptin C

Konar AD, Vass E, Hollosi M, Majer Z, Grueber G, Frese K, Sewald N (2013)
Chemistry & Biodiversity 10(5): 942-951.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ;
Abstract / Bemerkung
The efrapeptins, a family of naturally occurring peptides with inhibitory activities against ATPases, contain several ,-disubstituted -amino acids such as -aminoisobutyric acid (Aib) or isovaline (Iva) besides pipecolic acid (Pip), -Ala, Leu, Gly, and a C-terminal heterocyclic residue. Secondary -amino acids such as proline are known to stabilize discrete conformations in peptides. A similar influence is ascribed to N-alkyl -amino acids. We synthesized two efrapeptin C analogs with replacement of Pip by N-methyl-L-alanine (MeAla) using a combination of solid- and solution-phase techniques in a fragment-condensation strategy to compare the conformational bias of both secondary amino acids. The solution conformation was investigated by vibrational circular dichroism (VCD) to probe whether the analogs adopt a 310-helical conformation. The MeAla-containing analogs [MeAla1,3]efrapeptin C and [MeAla1,3,11]efrapeptin C inhibit ATP hydrolysis by the A3B3 complex of A1A0-ATP synthase from Methanosarcina mazei Go1.
Erscheinungsjahr
Zeitschriftentitel
Chemistry & Biodiversity
Band
10
Ausgabe
5
Seite(n)
942-951
ISSN
PUB-ID

Zitieren

Konar AD, Vass E, Hollosi M, et al. Conformational Properties of Secondary Amino Acids: Replacement of Pipecolic Acid by N-Methyl-L-alanine in Efrapeptin C. Chemistry & Biodiversity. 2013;10(5):942-951.
Konar, A. D., Vass, E., Hollosi, M., Majer, Z., Grueber, G., Frese, K., & Sewald, N. (2013). Conformational Properties of Secondary Amino Acids: Replacement of Pipecolic Acid by N-Methyl-L-alanine in Efrapeptin C. Chemistry & Biodiversity, 10(5), 942-951. doi:10.1002/cbdv.201300086
Konar, A. D., Vass, E., Hollosi, M., Majer, Z., Grueber, G., Frese, K., and Sewald, N. (2013). Conformational Properties of Secondary Amino Acids: Replacement of Pipecolic Acid by N-Methyl-L-alanine in Efrapeptin C. Chemistry & Biodiversity 10, 942-951.
Konar, A.D., et al., 2013. Conformational Properties of Secondary Amino Acids: Replacement of Pipecolic Acid by N-Methyl-L-alanine in Efrapeptin C. Chemistry & Biodiversity, 10(5), p 942-951.
A.D. Konar, et al., “Conformational Properties of Secondary Amino Acids: Replacement of Pipecolic Acid by N-Methyl-L-alanine in Efrapeptin C”, Chemistry & Biodiversity, vol. 10, 2013, pp. 942-951.
Konar, A.D., Vass, E., Hollosi, M., Majer, Z., Grueber, G., Frese, K., Sewald, N.: Conformational Properties of Secondary Amino Acids: Replacement of Pipecolic Acid by N-Methyl-L-alanine in Efrapeptin C. Chemistry & Biodiversity. 10, 942-951 (2013).
Konar, Anita Dutt, Vass, Elemer, Hollosi, Miklos, Majer, Zsuzsanna, Grueber, Gerhard, Frese, Katrin, and Sewald, Norbert. “Conformational Properties of Secondary Amino Acids: Replacement of Pipecolic Acid by N-Methyl-L-alanine in Efrapeptin C”. Chemistry & Biodiversity 10.5 (2013): 942-951.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

4-Cyano-α-methyl-l-phenylalanine as a spectroscopic marker for the investigation of peptaibiotic-membrane interactions.
De Zotti M, Bobone S, Bortolotti A, Longo E, Biondi B, Peggion C, Formaggio F, Toniolo C, Dalla Bona A, Kaptein B, Stella L., Chem Biodivers 12(4), 2015
PMID: 25879497
Solution synthesis, conformational analysis, and antimicrobial activity of three alamethicin F50/5 analogs bearing a trifluoroacetyl label.
De Zotti M, Ballano G, Jost M, Salnikov ES, Bechinger B, Oancea S, Crisma M, Toniolo C, Formaggio F., Chem Biodivers 11(8), 2014
PMID: 25146762

57 References

Daten bereitgestellt von Europe PubMed Central.

Inhibition of energy conservation reactions in chromatophores of Rhodospirillum rubrum by antibiotics.
Lucero H, Lescano WI, Vallejos RH., Arch. Biochem. Biophys. 186(1), 1978
PMID: 147053

Gupta, J. Am. Chem. Soc. 113(), 1991

Gupta, J. Org. Chem. 57(), 1992
Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria.
Abrahams JP, Leslie AG, Lutter R, Walker JE., Nature 370(6491), 1994
PMID: 8065448
The structure of bovine F1-ATPase complexed with the peptide antibiotic efrapeptin.
Abrahams JP, Buchanan SK, Van Raaij MJ, Fearnley IM, Leslie AG, Walker JE., Proc. Natl. Acad. Sci. U.S.A. 93(18), 1996
PMID: 8790345
Inhibition sites in F1-ATPase from bovine heart mitochondria.
Gledhill JR, Walker JE., Biochem. J. 386(Pt 3), 2005
PMID: 15537385
Spectroscopic and crystallographic studies of the mutant R416W give insight into the nucleotide binding traits of subunit B of the A1Ao ATP synthase.
Kumar A, Manimekalai MS, Balakrishna AM, Hunke C, Weigelt S, Sewald N, Gruber G., Proteins 75(4), 2009
PMID: 19003877
Antimalarial activities of peptide antibiotics isolated from fungi.
Nagaraj G, Uma MV, Shivayogi MS, Balaram H., Antimicrob. Agents Chemother. 45(1), 2001
PMID: 11120957
Properties of F1-ATPase from the uncD412 mutant of Escherichia coli.
Wise JG, Duncan TM, Latchney LR, Cox DN, Senior AE., Biochem. J. 215(2), 1983
PMID: 6228224
Resistance of thermophilic ATPase (TF1) to specific F1-atpase inhibitors including local anesthetics.
Saishu T, Kagawa Y, Shimizu R., Biochem. Biophys. Res. Commun. 112(3), 1983
PMID: 6221726

Lardy, Fed. Proc. Fed. Am. Soc. Exp. Biol. 34(), 1975
Inhibitors of the ATP synthethase system.
Linnett PE, Beechey RB., Meth. Enzymol. 55(), 1979
PMID: 156854

AUTHOR UNKNOWN, 0
F1F0-ATP synthase functions as a co-chaperone of Hsp90-substrate protein complexes.
Papathanassiu AE, MacDonald NJ, Bencsura A, Vu HA., Biochem. Biophys. Res. Commun. 345(1), 2006
PMID: 16682002
Mitochondrial inhibitors show preferential cytotoxicity to human pancreatic cancer PANC-1 cells under glucose-deprived conditions.
Momose I, Ohba S, Tatsuda D, Kawada M, Masuda T, Tsujiuchi G, Yamori T, Esumi H, Ikeda D., Biochem. Biophys. Res. Commun. 392(3), 2010
PMID: 20083087
Efrapeptins block exocytic but not endocytic trafficking of proteins.
Muroi M, Kaneko N, Suzuki K, Nishio T, Oku T, Sato T, Takatsuki A., Biochem. Biophys. Res. Commun. 227(3), 1996
PMID: 8886013
Highly N-methylated linear peptides produced by an atypical sponge-derived Acremonium sp.
Boot CM, Tenney K, Valeriote FA, Crews P., J. Nat. Prod. 69(1), 2006
PMID: 16441074
Efrapeptin J, a new down-regulator of the molecular chaperone GRP78 from a marine Tolypocladium sp.
Hayakawa Y, Hattori Y, Kawasaki T, Kanoh K, Adachi K, Shizuri Y, Shin-ya K., J. Antibiot. 61(6), 2008
PMID: 18667784

Krasnoff, J. Invertebr. Pathol. 58(), 1991

AUTHOR UNKNOWN, 0

Jost, Angew. Chem. 114(), 2002
The first total synthesis of efrapeptin C.
Jost M, Greie JC, Stemmer N, Wilking SD, Altendorf K, Sewald N., Angew. Chem. Int. Ed. Engl. 41(22), 2002
PMID: 12434358
Synthesis and conformational analysis of efrapeptins.
Weigelt S, Huber T, Hofmann F, Jost M, Ritzefeld M, Luy B, Freudenberger C, Majer Z, Vass E, Greie JC, Panella L, Kaptein B, Broxterman QB, Kessler H, Altendorf K, Hollosi M, Sewald N., Chemistry 18(2), 2011
PMID: 22147615

Jost, Synthesis (), 2005
Synthesis, and structural and biological studies of efrapeptin C analogues.
Jost M, Weigelt S, Huber T, Majer Z, Greie JC, Altendorf K, Sewald N., Chem. Biodivers. 4(6), 2007
PMID: 17589859

AUTHOR UNKNOWN, 0

Meldal, Tetrahedron Lett. 38(), 1997
Alpha-azido acids for direct use in solid-phase peptide synthesis.
Tornoe CW, Davis P, Porreca F, Meldal M., J. Pept. Sci. 6(12), 2000
PMID: 11192239
Improving oral bioavailability of peptides by multiple N-methylation: somatostatin analogues.
Biron E, Chatterjee J, Ovadia O, Langenegger D, Brueggen J, Hoyer D, Schmid HA, Jelinek R, Gilon C, Hoffman A, Kessler H., Angew. Chem. Int. Ed. Engl. 47(14), 2008
PMID: 18297660
N-methylated cyclic pentaalanine peptides as template structures.
Chatterjee J, Mierke D, Kessler H., J. Am. Chem. Soc. 128(47), 2006
PMID: 17117868
N-methylation of peptides: a new perspective in medicinal chemistry.
Chatterjee J, Gilon C, Hoffman A, Kessler H., Acc. Chem. Res. 41(10), 2008
PMID: 18636716
Multiple N-methylation by a designed approach enhances receptor selectivity.
Chatterjee J, Ovadia O, Zahn G, Marinelli L, Hoffman A, Gilon C, Kessler H., J. Med. Chem. 50(24), 2007
PMID: 17973471
Solid-phase synthesis and characterization of N-methyl-rich peptides.
Teixido M, Albericio F, Giralt E., J. Pept. Res. 65(2), 2005
PMID: 15705160
Optimized selective N-methylation of peptides on solid support.
Biron E, Chatterjee J, Kessler H., J. Pept. Sci. 12(3), 2006
PMID: 16189816
Intestinal permeability of cyclic peptides: common key backbone motifs identified.
Beck JG, Chatterjee J, Laufer B, Kiran MU, Frank AO, Neubauer S, Ovadia O, Greenberg S, Gilon C, Hoffman A, Kessler H., J. Am. Chem. Soc. 134(29), 2012
PMID: 22737969

White, Nat. Chem. Biol. (), 2011
Design of folded peptides.
Venkatraman J, Shankaramma SC, Balaram P., Chem. Rev. 101(10), 2001
PMID: 11710065

Carpino, Acc. Chem. Res. 29(), 1996

Carpino, Tetrahedron 55(), 1999

Brückner, Angew. Chem. 91(), 1979

AUTHOR UNKNOWN, 0

Bartra, Tetrahedron 46(), 1990

Bartra, Tetrahedron Lett. 28(), 1987

AUTHOR UNKNOWN, 0
Binding of subunit E into the A-B interface of the A(1)A(O) ATP synthase.
Hunke C, Antosch M, Muller V, Gruber G., Biochim. Biophys. Acta 1808(9), 2011
PMID: 21669184

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23681735
PubMed | Europe PMC

Suchen in

Google Scholar