Motor primitives of pointing movements in a three-dimensional workspace

Schütz C, Schack T (2013)
Experimental Brain Research 227(3): 355-365.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
A central question of motor control is how the motor system deals with redundant degrees of freedom. Redundancy can be reduced by coupling multiple degrees of freedom into a single motor primitive. Previous studies measuring motor primitives in aimed limb movements were restricted to two-dimensional target planes. We asked whether a limited number of motor primitives would also be sufficient to capture the posture variance of aimed limb movements in a three-dimensional target volume. To this end, participants had to point towards virtual targets uniformly spaced in a three-dimensional workspace. Results showed that three motor primitives captured 89.7 +/- A 2.8 % of the data variance of unrestrained pointing movements. Each motor primitive corresponded to a valid movement of the arm. The findings imply that complex postures in a three-dimensional target volume can be reduced to three motor primitives. The reduction results in a unique mapping of target position and posture and, thus, solves the redundancy problem. The reduction further indicates that, in a pointing task, the motor system does not control hand rotation independent of hand translation.
Pointing; Motor primitives; Postural synergies; Virtual reality
Experimental Brain Research
Page URI


Schütz C, Schack T. Motor primitives of pointing movements in a three-dimensional workspace. Experimental Brain Research. 2013;227(3):355-365.
Schütz, C., & Schack, T. (2013). Motor primitives of pointing movements in a three-dimensional workspace. Experimental Brain Research, 227(3), 355-365. doi:10.1007/s00221-013-3516-2
Schütz, Christoph, and Schack, Thomas. 2013. “Motor primitives of pointing movements in a three-dimensional workspace”. Experimental Brain Research 227 (3): 355-365.
Schütz, C., and Schack, T. (2013). Motor primitives of pointing movements in a three-dimensional workspace. Experimental Brain Research 227, 355-365.
Schütz, C., & Schack, T., 2013. Motor primitives of pointing movements in a three-dimensional workspace. Experimental Brain Research, 227(3), p 355-365.
C. Schütz and T. Schack, “Motor primitives of pointing movements in a three-dimensional workspace”, Experimental Brain Research, vol. 227, 2013, pp. 355-365.
Schütz, C., Schack, T.: Motor primitives of pointing movements in a three-dimensional workspace. Experimental Brain Research. 227, 355-365 (2013).
Schütz, Christoph, and Schack, Thomas. “Motor primitives of pointing movements in a three-dimensional workspace”. Experimental Brain Research 227.3 (2013): 355-365.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Motor hysteresis in a sequential grasping and pointing task is absent in task-critical joints.
Schütz C, Weigelt M, Schack T., Exp Brain Res 235(3), 2017
PMID: 27864596
Torque response to external perturbation during unconstrained goal-directed arm movements.
Zhang L, Straube A, Eggert T., Exp Brain Res 232(4), 2014
PMID: 24477761

51 References

Daten bereitgestellt von Europe PubMed Central.

Pointing to kinesthetic targets in space.
Baud-Bovy G, Viviani P., J. Neurosci. 18(4), 1998
PMID: 9454859

NA, 1967
Modular control of pointing beyond arm's length.
Berret B, Bonnetblanc F, Papaxanthis C, Pozzo T., J. Neurosci. 29(1), 2009
PMID: 19129397
Natural prehension in trials without haptic feedback but only when calibration is allowed.
Bingham G, Coats R, Mon-Williams M., Neuropsychologia 45(2), 2006
PMID: 17045314
Arm trajectory formation in monkeys.
Bizzi E, Accornero N, Chapple W, Hogan N., Exp Brain Res 46(1), 1982
PMID: 6802666
Inter-joint coupling and joint angle synergies of human catching movements.
Bockemuhl T, Troje NF, Durr V., Hum Mov Sci 29(1), 2009
PMID: 19945187
Low dimensionality of supraspinally induced force fields.
d'Avella A, Bizzi E., Proc. Natl. Acad. Sci. U.S.A. 95(13), 1998
PMID: 9636215
Shared and specific muscle synergies in natural motor behaviors.
d'Avella A, Bizzi E., Proc. Natl. Acad. Sci. U.S.A. 102(8), 2005
PMID: 15708969
Combinations of muscle synergies in the construction of a natural motor behavior.
d'Avella A, Saltiel P, Bizzi E., Nat. Neurosci. 6(3), 2003
PMID: 12563264
Control of fast-reaching movements by muscle synergy combinations.
d'Avella A, Portone A, Fernandez L, Lacquaniti F., J. Neurosci. 26(30), 2006
PMID: 16870725
Complex movements evoked by microstimulation of precentral cortex.
Graziano MS, Taylor CS, Moore T., Neuron 34(5), 2002
PMID: 12062029
Arm movements evoked by electrical stimulation in the motor cortex of monkeys.
Graziano MS, Aflalo TN, Cooke DF., J. Neurophysiol. 94(6), 2005
PMID: 16120657
Kinematic and dynamic synergies of human precision-grip movements.
Grinyagin IV, Biryukova EV, Maier MA., J. Neurophysiol. 94(4), 2005
PMID: 15917316
Signal-dependent noise determines motor planning.
Harris CM, Wolpert DM., Nature 394(6695), 1998
PMID: 9723616
Reaching for virtual objects: binocular disparity and the control of prehension.
Hibbard PB, Bradshaw MF., Exp Brain Res 148(2), 2002
PMID: 12520407
An organizing principle for a class of voluntary movements.
Hogan N., J. Neurosci. 4(11), 1984
PMID: 6502203

DA, Ecology 74(8), 1993

MI, 1999
A kinematic comparison of single and multijoint pointing movements.
Kaminski TR, Gentile AM., Exp Brain Res 78(3), 1989
PMID: 2612598

JAS, Hum Mov Sci 13(1), 1994

ML, Hum Mov Sci 14(1), 1995

Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment.
Magdalon EC, Michaelsen SM, Quevedo AA, Levin MF., Acta Psychol (Amst) 138(1), 2011
PMID: 21684505

M, ACM Trans Model Comput Simul 8(1), 1998
Spatial control of arm movements.
Morasso P., Exp Brain Res 42(2), 1981
PMID: 7262217


I, Comput Graph Forum 17(3), 1998

DA, Hum Mov Sci 11(1–2), 1992
A model for reaching control.
Rosenbaum DA, Engelbrecht SE, Bushe MM, Loukopoulos LD., Acta Psychol (Amst) 82(1-3), 1993
PMID: 8475768
Planning reaches by evaluating stored postures.
Rosenbaum DA, Loukopoulos LD, Meulenbroek RG, Vaughan J, Engelbrecht SE., Psychol Rev 102(1), 1995
PMID: 7878161
The problem of serial order in behavior: Lashley's legacy.
Rosenbaum DA, Cohen RG, Jax SA, Weiss DJ, van der Wel R., Hum Mov Sci 26(4), 2007
PMID: 17698232

Postural hand synergies for tool use.
Santello M, Flanders M, Soechting JF., J. Neurosci. 18(23), 1998
PMID: 9822764
Prospective and retrospective effects in a virtual pointing task.
Schutz C, Schack T., Acta Psychol (Amst) 142(3), 2013
PMID: 23419809
Motor control strategies in a continuous task space.
Schutz C, Weigelt M, Odekerken D, Klein-Soetebier T, Schack T., Motor Control 15(3), 2011
PMID: 21878687
Dissociation between hand motion and population vectors from neural activity in motor cortex.
Scott SH, Gribble PL, Graham KM, Cabel DW., Nature 413(6852), 2001
PMID: 11557980
Invariant characteristics of a pointing movement in man.
Soechting JF, Lacquaniti F., J. Neurosci. 1(7), 1981
PMID: 7346580

Kinematic and kinetic constraints on arm, trunk, and leg segments in target-reaching movements.
Thomas JS, Corcos DM, Hasan Z., J. Neurophysiol. 93(1), 2004
PMID: 15342717
Moving and memorizing: motor planning modulates the recency effect in serial and free recall.
Weigelt M, Rosenbaum DA, Huelshorst S, Schack T., Acta Psychol (Amst) 132(1), 2009
PMID: 19591968

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 23604576
PubMed | Europe PMC

Suchen in

Google Scholar