Synthesizing cognition in neuromorphic electronic systems

Neftci E, Binas J, Rutishauser U, Chicca E, Indiveri G, Douglas RJ (2013)
Proceedings of the National Academy of Sciences of the United States of America 110(37): E3468-E3476.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Neftci, E.; Binas, J.; Rutishauser, U.; Chicca, ElisabettaUniBi ; Indiveri, G.; Douglas, R. J.
Abstract / Bemerkung
The quest to implement intelligent processing in electronic neuromorphic systems lacks methods for achieving reliable behavioral dynamics on substrates of inherently imprecise and noisy neurons. Here we report a solution to this problem that involves first mapping an unreliable hardware layer of spiking silicon neurons into an abstract computational layer composed of generic reliable subnetworks of model neurons and then composing the target behavioral dynamics as a “soft state machine” running on these reliable subnets. In the first step, the neural networks of the abstract layer are realized on the hardware substrate by mapping the neuron circuit bias voltages to the model parameters. This mapping is obtained by an automatic method in which the electronic circuit biases are calibrated against the model parameters by a series of population activity measurements. The abstract computational layer is formed by configuring neural networks as generic soft winner-take-all subnetworks that provide reliable processing by virtue of their active gain, signal restoration, and multistability. The necessary states and transitions of the desired high-level behavior are then easily embedded in the computational layer by introducing only sparse connections between some neurons of the various subnets. We demonstrate this synthesis method for a neuromorphic sensory agent that performs real-time context-dependent classification of motion patterns observed by a silicon retina.
Stichworte
very large-scale integration; artificial neural systems; working memory analog; sensorimotor; decision making
Erscheinungsjahr
2013
Zeitschriftentitel
Proceedings of the National Academy of Sciences of the United States of America
Band
110
Ausgabe
37
Seite(n)
E3468-E3476
ISSN
0027-8424
eISSN
1091-6490
Page URI
https://pub.uni-bielefeld.de/record/2612571

Zitieren

Neftci E, Binas J, Rutishauser U, Chicca E, Indiveri G, Douglas RJ. Synthesizing cognition in neuromorphic electronic systems. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(37):E3468-E3476.
Neftci, E., Binas, J., Rutishauser, U., Chicca, E., Indiveri, G., & Douglas, R. J. (2013). Synthesizing cognition in neuromorphic electronic systems. Proceedings of the National Academy of Sciences of the United States of America, 110(37), E3468-E3476. doi:10.1073/pnas.1212083110
Neftci, E., Binas, J., Rutishauser, U., Chicca, Elisabetta, Indiveri, G., and Douglas, R. J. 2013. “Synthesizing cognition in neuromorphic electronic systems”. Proceedings of the National Academy of Sciences of the United States of America 110 (37): E3468-E3476.
Neftci, E., Binas, J., Rutishauser, U., Chicca, E., Indiveri, G., and Douglas, R. J. (2013). Synthesizing cognition in neuromorphic electronic systems. Proceedings of the National Academy of Sciences of the United States of America 110, E3468-E3476.
Neftci, E., et al., 2013. Synthesizing cognition in neuromorphic electronic systems. Proceedings of the National Academy of Sciences of the United States of America, 110(37), p E3468-E3476.
E. Neftci, et al., “Synthesizing cognition in neuromorphic electronic systems”, Proceedings of the National Academy of Sciences of the United States of America, vol. 110, 2013, pp. E3468-E3476.
Neftci, E., Binas, J., Rutishauser, U., Chicca, E., Indiveri, G., Douglas, R.J.: Synthesizing cognition in neuromorphic electronic systems. Proceedings of the National Academy of Sciences of the United States of America. 110, E3468-E3476 (2013).
Neftci, E., Binas, J., Rutishauser, U., Chicca, Elisabetta, Indiveri, G., and Douglas, R. J. “Synthesizing cognition in neuromorphic electronic systems”. Proceedings of the National Academy of Sciences of the United States of America 110.37 (2013): E3468-E3476.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:17Z
MD5 Prüfsumme
637ec82c67aa2170783736e69c7e91d7


27 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

An Extreme Learning Machine-Based Neuromorphic Tactile Sensing System for Texture Recognition.
Rasouli M, Chen Y, Basu A, Kukreja SL, Thakor NV., IEEE Trans Biomed Circuits Syst 12(2), 2018
PMID: 29570059
Neural and Synaptic Array Transceiver: A Brain-Inspired Computing Framework for Embedded Learning.
Detorakis G, Sheik S, Augustine C, Paul S, Pedroni BU, Dutt N, Krichmar J, Cauwenberghs G, Neftci E., Front Neurosci 12(), 2018
PMID: 30210274
Organizing Sequential Memory in a Neuromorphic Device Using Dynamic Neural Fields.
Kreiser R, Aathmani D, Qiao N, Indiveri G, Sandamirskaya Y., Front Neurosci 12(), 2018
PMID: 30524218
CABots and Other Neural Agents.
Huyck C, Mitchell I., Front Neurorobot 12(), 2018
PMID: 30534068
Large-Scale Neuromorphic Spiking Array Processors: A Quest to Mimic the Brain.
Thakur CS, Molin JL, Cauwenberghs G, Indiveri G, Kumar K, Qiao N, Schemmel J, Wang R, Chicca E, Olson Hasler J, Seo JS, Yu S, Cao Y, van Schaik A, Etienne-Cummings R., Front Neurosci 12(), 2018
PMID: 30559644
Hierarchical Address Event Routing for Reconfigurable Large-Scale Neuromorphic Systems.
Park J, Yu T, Joshi S, Maier C, Cauwenberghs G., IEEE Trans Neural Netw Learn Syst 28(10), 2017
PMID: 27483491
Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines.
Neftci EO, Augustine C, Paul S, Detorakis G., Front Neurosci 11(), 2017
PMID: 28680387
Connecting the Brain to Itself through an Emulation.
Serruya MD., Front Neurosci 11(), 2017
PMID: 28713235
Computational Foundations of Natural Intelligence.
van Gerven M., Front Comput Neurosci 11(), 2017
PMID: 29375355
Specific excitatory connectivity for feature integration in mouse primary visual cortex.
Muir DR, Molina-Luna P, Roth MM, Helmchen F, Kampa BM., PLoS Comput Biol 13(12), 2017
PMID: 29240769
Stochastic phase-change neurons.
Tuma T, Pantazi A, Le Gallo M, Sebastian A, Eleftheriou E., Nat Nanotechnol 11(8), 2016
PMID: 27183057
Computation in dynamically bounded asymmetric systems.
Rutishauser U, Slotine JJ, Douglas R., PLoS Comput Biol 11(1), 2015
PMID: 25617645
A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses.
Qiao N, Mostafa H, Corradi F, Osswald M, Stefanini F, Sumislawska D, Indiveri G., Front Neurosci 9(), 2015
PMID: 25972778
Electrochemical Bioelectronic Device Consisting of Metalloprotein for Analog Decision Making.
Chung YH, Lee T, Yoo SY, Min J, Choi JW., Sci Rep 5(), 2015
PMID: 26400018
Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems.
Giulioni M, Corradi F, Dante V, del Giudice P., Sci Rep 5(), 2015
PMID: 26463272
A Neuromorphic Event-Based Neural Recording System for Smart Brain-Machine-Interfaces.
Corradi F, Indiveri G., IEEE Trans Biomed Circuits Syst 9(5), 2015
PMID: 26513801
An efficient automated parameter tuning framework for spiking neural networks.
Carlson KD, Nageswaran JM, Dutt N, Krichmar JL., Front Neurosci 8(), 2014
PMID: 24550771
Learning and stabilization of winner-take-all dynamics through interacting excitatory and inhibitory plasticity.
Binas J, Rutishauser U, Indiveri G, Pfeiffer M., Front Comput Neurosci 8(), 2014
PMID: 25071538
PyNCS: a microkernel for high-level definition and configuration of neuromorphic electronic systems.
Stefanini F, Neftci EO, Sheik S, Indiveri G., Front Neuroinform 8(), 2014
PMID: 25232314
A robust sound perception model suitable for neuromorphic implementation.
Coath M, Sheik S, Chicca E, Indiveri G, Denham SL, Wennekers T., Front Neurosci 7(), 2013
PMID: 24478621
Event-driven contrastive divergence for spiking neuromorphic systems.
Neftci E, Das S, Pedroni B, Kreutz-Delgado K, Cauwenberghs G., Front Neurosci 7(), 2013
PMID: 24574952
Reverse engineering the cognitive brain.
Cauwenberghs G., Proc Natl Acad Sci U S A 110(39), 2013
PMID: 24029019

73 References

Daten bereitgestellt von Europe PubMed Central.


Mead CA., 1989

von J., 1958

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Neurotech for neuroscience: unifying concepts, organizing principles, and emerging tools.
Silver R, Boahen K, Grillner S, Kopell N, Olsen KL., J. Neurosci. 27(44), 2007
PMID: 17978017

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Simple substrates for complex cognition.
Dayan P., Front Neurosci 2(2), 2008
PMID: 19225599
Task-specific neural activity in the primate prefrontal cortex.
Asaad WF, Rainer G, Miller EK., J. Neurophysiol. 84(1), 2000
PMID: 10899218
Neuronal circuits of the neocortex.
Douglas RJ, Martin KA., Annu. Rev. Neurosci. 27(), 2004
PMID: 15217339
Stability and generalization
Bousquet O, Elisseeff A., 2002

AUTHOR UNKNOWN, 0
Competition and cooperation in neural nets
Amari S, Arbib MA., 1977
State-dependent computation using coupled recurrent networks.
Rutishauser U, Douglas RJ., Neural Comput 21(2), 2009
PMID: 19431267

AUTHOR UNKNOWN, 0
Collective stability of networks of winner-take-all circuits
Rutishauser U, Douglas RJ, Slotine JJ., 2010
A systematic method for configuring VLSI networks of spiking neurons.
Neftci E, Chicca E, Indiveri G, Douglas R., Neural Comput 23(10), 2011
PMID: 21732859

AUTHOR UNKNOWN, 0
Selective attention in multi-chip address-event systems.
Bartolozzi C, Indiveri G., Sensors (Basel) 9(7), 2009
PMID: 22346689

AUTHOR UNKNOWN, 0
A pulse-coded communications infrastructure for neuromorphic systems
Deiss SR, Douglas RJ, Whatley AM., 1998

AUTHOR UNKNOWN, 0
Neural mechanisms of selective visual attention.
Desimone R, Duncan J., Annu. Rev. Neurosci. 18(), 1995
PMID: 7605061

Kohavi Z., 1979

AUTHOR UNKNOWN, 0
The role of the anterior prefrontal cortex in human cognition.
Koechlin E, Basso G, Pietrini P, Panzer S, Grafman J., Nature 399(6732), 1999
PMID: 10335843

AUTHOR UNKNOWN, 0
Dynamics of a recurrent network of spiking neurons before and following learning
Amit DJ, Brunel N., 1997
A fluctuation-driven mechanism for slow decision processes in reverberant networks.
Marti D, Deco G, Mattia M, Gigante G, Del Giudice P., PLoS ONE 3(7), 2008
PMID: 18596965

Bishop CM., 2006
Neural activity in the primate prefrontal cortex during associative learning.
Asaad WF, Rainer G, Miller EK., Neuron 21(6), 1998
PMID: 9883732
Interactions between frontal cortex and basal ganglia in working memory: a computational model.
Frank MJ, Loughry B, O'Reilly RC., Cogn Affect Behav Neurosci 1(2), 2001
PMID: 12467110

AUTHOR UNKNOWN, 0
A microcircuit model of the frontal eye fields.
Heinzle J, Hepp K, Martin KA., J. Neurosci. 27(35), 2007
PMID: 17728448

AUTHOR UNKNOWN, 0

Liu S-C, Kramer J, Indiveri G, Delbrück T, Douglas R., 2002
Neuromorphic silicon neuron circuits.
Indiveri G, Linares-Barranco B, Hamilton TJ, van Schaik A, Etienne-Cummings R, Delbruck T, Liu SC, Dudek P, Hafliger P, Renaud S, Schemmel J, Cauwenberghs G, Arthur J, Hynna K, Folowosele F, Saighi S, Serrano-Gotarredona T, Wijekoon J, Wang Y, Boahen K., Front Neurosci 5(), 2011
PMID: 21747754

AUTHOR UNKNOWN, 0
Silicon neurons that compute
Choudhary S., 2012
Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit.
Hahnloser RH, Sarpeshkar R, Mahowald MA, Douglas RJ, Seung HS., Nature 405(6789), 2000
PMID: 10879535
Connectionist models and their properties
Feldman JA, Ballard DH., 1982
Contour enhancement, short term memory, and constancies in reverberating neural networks
Grossberg S., 1973
A quantitative map of the circuit of cat primary visual cortex.
Binzegger T, Douglas RJ, Martin KA., J. Neurosci. 24(39), 2004
PMID: 15456817
Real-Time Classification of Complex Patterns Using Spike-Based Learning in Neuromorphic VLSI.
Mitra S, Fusi S, Indiveri G., IEEE Trans Biomed Circuits Syst 3(1), 2009
PMID: 23853161

Vapnik VN., 1982
Bistable perception modeled as competing stochastic integrations at two levels.
Gigante G, Mattia M, Braun J, Del Giudice P., PLoS Comput. Biol. 5(7), 2009
PMID: 19593372
Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles.
Jones LM, Fontanini A, Sadacca BF, Miller P, Katz DB., Proc. Natl. Acad. Sci. U.S.A. 104(47), 2007
PMID: 18000059

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses.
Vogelstein RJ, Mallik U, Vogelstein JT, Cauwenberghs G., IEEE Trans Neural Netw 18(1), 2007
PMID: 17278476
An event-driven multi-kernel convolution processor module for event-driven vision sensors
Camunas-Mesa L., 2012

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Silicon auditory processors as computer peripherals.
Lazzaro J, Wawrzynek J, Mahowald M, Sivilotti M, Gillespie D., IEEE Trans Neural Netw 4(3), 1993
PMID: 18267754

AUTHOR UNKNOWN, 0
Synaptic dynamics in analog VLSI.
Bartolozzi C, Indiveri G., Neural Comput 19(10), 2007
PMID: 17716003

AUTHOR UNKNOWN, 0

Rodger SH, Finley TW., 2006

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23878215
PubMed | Europe PMC

Suchen in

Google Scholar