Fast Shepard interpolation on graphics processing units: Potential energy surfaces and dynamics for H+CH4 -> H-2+CH3

Welsch R, Manthe U (2013)
The Journal of Chemical Physics 138(16): 164118.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
A strategy for the fast evaluation of Shepard interpolated potential energy surfaces (PESs) utilizing graphics processing units (GPUs) is presented. Speed ups of several orders of magnitude are gained for the title reaction on the ZFWCZ PES [Y. Zhou, B. Fu, C. Wang, M. A. Collins, and D. H. Zhang, J. Chem. Phys. 134, 064323 (2011)]. Thermal rate constants are calculated employing the quantum transition state concept and the multi-layer multi-configurational time-dependent Hartree approach. Results for the ZFWCZ PES are compared to rate constants obtained for other ab initio PESs and problems are discussed. A revised PES is presented. Thermal rate constants obtained for the revised PES indicate that an accurate description of the anharmonicity around the transition state is crucial. (C) 2013 AIP Publishing LLC.
Erscheinungsjahr
Zeitschriftentitel
The Journal of Chemical Physics
Band
138
Ausgabe
16
Seite(n)
164118
ISSN
PUB-ID

Zitieren

Welsch R, Manthe U. Fast Shepard interpolation on graphics processing units: Potential energy surfaces and dynamics for H+CH4 -> H-2+CH3. The Journal of Chemical Physics. 2013;138(16):164118.
Welsch, R., & Manthe, U. (2013). Fast Shepard interpolation on graphics processing units: Potential energy surfaces and dynamics for H+CH4 -> H-2+CH3. The Journal of Chemical Physics, 138(16), 164118. doi:10.1063/1.4802059
Welsch, R., and Manthe, U. (2013). Fast Shepard interpolation on graphics processing units: Potential energy surfaces and dynamics for H+CH4 -> H-2+CH3. The Journal of Chemical Physics 138, 164118.
Welsch, R., & Manthe, U., 2013. Fast Shepard interpolation on graphics processing units: Potential energy surfaces and dynamics for H+CH4 -> H-2+CH3. The Journal of Chemical Physics, 138(16), p 164118.
R. Welsch and U. Manthe, “Fast Shepard interpolation on graphics processing units: Potential energy surfaces and dynamics for H+CH4 -> H-2+CH3”, The Journal of Chemical Physics, vol. 138, 2013, pp. 164118.
Welsch, R., Manthe, U.: Fast Shepard interpolation on graphics processing units: Potential energy surfaces and dynamics for H+CH4 -> H-2+CH3. The Journal of Chemical Physics. 138, 164118 (2013).
Welsch, Ralph, and Manthe, Uwe. “Fast Shepard interpolation on graphics processing units: Potential energy surfaces and dynamics for H+CH4 -> H-2+CH3”. The Journal of Chemical Physics 138.16 (2013): 164118.

20 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Natural reaction channels in H + CHD3 → H2 + CD3.
Ellerbrock R, Mantheuwe U., Faraday Discuss 212(0), 2018
PMID: 30226505
Recent advances in quantum scattering calculations on polyatomic bimolecular reactions.
Fu B, Shan X, Zhang DH, Clary DC., Chem Soc Rev 46(24), 2017
PMID: 29143835

136 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0
Mode- and bond-selective reaction of Cl(2P3/2) with CH3D: C-H stretch overtone excitation near 6000 cm(-1).
Holiday RJ, Kwon CH, Annesley CJ, Fleming Crim F., J Chem Phys 125(13), 2006
PMID: 17029427
Do vibrational excitations of CHD3 preferentially promote reactivity toward the chlorine atom?
Yan S, Wu YT, Zhang B, Yue XF, Liu K., Science 316(5832), 2007
PMID: 17588925
Tracking the energy flow along the reaction path.
Yan S, Wu YT, Liu K., Proc. Natl. Acad. Sci. U.S.A. 105(35), 2008
PMID: 18664573
State-specific correlation of coincident product pairs in the F + CD4 reaction.
Lin JJ, Zhou J, Shiu W, Liu K., Science 300(5621), 2003
PMID: 12738861
Reactive resonance in a polyatomic reaction.
Shiu W, Lin JJ, Liu K., Phys. Rev. Lett. 92(10), 2004
PMID: 15089205

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
A transition state wave packet study of the H+CH4 reaction.
Zhang L, Lu Y, Lee SY, Zhang DH., J Chem Phys 127(23), 2007
PMID: 18154388

AUTHOR UNKNOWN, 0
First-principles theory for the H + CH4 --> H2 + CH3 reaction.
Wu T, Werner HJ, Manthe U., Science 306(5705), 2004
PMID: 15618512
H + CD4 abstraction reaction dynamics: product energy partitioning.
Hu W, Lendvay G, Troya D, Schatz GC, Camden JP, Bechtel HA, Brown DJ, Martin MR, Zare RN., J Phys Chem A 110(9), 2006
PMID: 16509623
An ab initio potential surface describing abstraction and exchange for H+CH4.
Zhang X, Braams BJ, Bowman JM., J Chem Phys 124(2), 2006
PMID: 16422563
Accurate quantum calculations of the reaction rates for H/D+CH4.
van Harrevelt R, Nyman G, Manthe U., J Chem Phys 126(8), 2007
PMID: 17343444
Thermochemistry and accurate quantum reaction rate calculations for H2/HD/D2 + CH3.
Nyman G, van Harrevelt R, Manthe U., J Phys Chem A 111(41), 2007
PMID: 17547382
Comparison of quantum dynamics and quantum transition state theory estimates of the H + CH4 reaction rate.
Andersson S, Nyman G, Arnaldsson A, Manthe U, Jonsson H., J Phys Chem A 113(16), 2009
PMID: 19275158
Ab initio potential energy surface and quantum dynamics for the H + CH4 → H2 + CH3 reaction.
Zhou Y, Fu B, Wang C, Collins MA, Zhang DH., J Chem Phys 134(6), 2011
PMID: 21322696
Depression of reactivity by the collision energy in the single barrier H + CD4 -> HD + CD3 reaction.
Zhang W, Zhou Y, Wu G, Lu Y, Pan H, Fu B, Shuai Q, Liu L, Liu S, Zhang L, Jiang B, Dai D, Lee SY, Xie Z, Xie Z, Braams BJ, Bowman JM, Collins MA, Zhang DH, Yang X., Proc. Natl. Acad. Sci. U.S.A. 107(29), 2010
PMID: 20615988

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Experimental and theoretical differential cross sections for a four-atom reaction: HD + OH → H₂O + D.
Xiao C, Xu X, Liu S, Wang T, Dong W, Yang T, Sun Z, Dai D, Xu X, Zhang DH, Yang X., Science 333(6041), 2011
PMID: 21778397

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
State-to-state reaction probabilities within the quantum transition state framework.
Welsch R, Huarte-Larranaga F, Manthe U., J Chem Phys 136(6), 2012
PMID: 22360179

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Accelerating Correlated Quantum Chemistry Calculations Using Graphical Processing Units and a Mixed Precision Matrix Multiplication Library.
Olivares-Amaya R, Watson MA, Edgar RG, Vogt L, Shao Y, Aspuru-Guzik A., J Chem Theory Comput 6(1), 2010
PMID: 26614326
Uncontracted Rys Quadrature Implementation of up to G Functions on Graphical Processing Units.
Asadchev A, Allada V, Felder J, Bode BM, Gordon MS, Windus TL., J Chem Theory Comput 6(3), 2010
PMID: 26613300
Accelerating resolution-of-the-identity second-order Moller-Plesset quantum chemistry calculations with graphical processing units.
Vogt L, Olivares-Amaya R, Kermes S, Shao Y, Amador-Bedolla C, Aspuru-Guzik A., J Phys Chem A 112(10), 2008
PMID: 18229900
Density functional theory calculation on many-cores hybrid central processing unit-graphic processing unit architectures.
Genovese L, Ospici M, Deutsch T, Mehaut JF, Neelov A, Goedecker S., J Chem Phys 131(3), 2009
PMID: 19624177
Computing the Density Matrix in Electronic Structure Theory on Graphics Processing Units.
Cawkwell MJ, Sanville EJ, Mniszewski SM, Niklasson AM., J Chem Theory Comput 8(11), 2012
PMID: 26605576
Generating Efficient Quantum Chemistry Codes for Novel Architectures.
Titov AV, Ufimtsev IS, Luehr N, Martinez TJ., J Chem Theory Comput 9(1), 2012
PMID: 26589024
Dynamic Precision for Electron Repulsion Integral Evaluation on Graphical Processing Units (GPUs).
Luehr N, Ufimtsev IS, Martinez TJ., J Chem Theory Comput 7(4), 2011
PMID: 26606344
ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale.
Harvey MJ, Giupponi G, Fabritiis GD., J Chem Theory Comput 5(6), 2009
PMID: 26609855
Accelerating molecular dynamic simulation on graphics processing units.
Friedrichs MS, Eastman P, Vaidyanathan V, Houston M, Legrand S, Beberg AL, Ensign DL, Bruns CM, Pande VS., J Comput Chem 30(6), 2009
PMID: 19191337
Accelerating molecular modeling applications with graphics processors.
Stone JE, Phillips JC, Freddolino PL, Hardy DJ, Trabuco LG, Schulten K., J Comput Chem 28(16), 2007
PMID: 17894371

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
HEAT: High accuracy extrapolated ab initio thermochemistry.
Tajti A, Szalay PG, Csaszar AG, Kallay M, Gauss J, Valeev EF, Flowers BA, Vazquez J, Stanton JF., J Chem Phys 121(23), 2004
PMID: 15634125

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23635122
PubMed | Europe PMC

Suchen in

Google Scholar