Blue-Light-Induced Unfolding of the J alpha Helix Allows for the Dimerization of Aureochrome-LOV from the Diatom Phaeodactylum tricornutum

Herman E, Sachse M, Kroth PG, Kottke T (2013)
Biochemistry 52(18): 3094-3101.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Herman, ElenaUniBi; Sachse, Matthias; Kroth, Peter G.; Kottke, TilmanUniBi
Abstract / Bemerkung
Aureochromes have recently been shown to act as blue-light-regulated transcription factors in the stramenopile alga Vaucheria frigida. They comprise a light-, oxygen-, or voltage-sensitive (LOV) domain as a sensory module with flavin mononucleotide (FMN) as a chromophore and a basic region leucine zipper (bZIP) domain as an effector. Aureochromes are the only members of a large LOV protein family, where the effector domain is located N-terminal to the sensor domain. This domain inversion positions the linking J alpha helix of other LOV proteins to the terminus, raising the question of the role of J alpha in aureochrome signaling. In phototropins, signaling proceeds from LOV2 via dissociation and unwinding of the J alpha helix to the C-terminal kinase effector domain. In contrast, other LOV proteins have been demonstrated to activate the effector without the unfolding of J alpha. We investigated the LOV domain of aureochrome la from the diatom Phaeodactylum tricornutum both with and without the J alpha helix. Fourier transform infrared difference spectroscopy provides evidence that the J alpha helix unfolds upon illumination. This unfolding is prerequisite for light-induced dimerization of LOV. Under illumination, full conversion to the dimer was observed by size exclusion chromatography. In the absence of the helix, a monomer was detected in the dark and in the light. As a further effect, the recovery of the dark state is 6-fold slower in LOV-J alpha than LOV. We therefore postulate that the J alpha helix plays an important role in aureochrome signaling.
Erscheinungsjahr
2013
Zeitschriftentitel
Biochemistry
Band
52
Ausgabe
18
Seite(n)
3094-3101
ISSN
0006-2960
eISSN
1520-4995
Page URI
https://pub.uni-bielefeld.de/record/2607196

Zitieren

Herman E, Sachse M, Kroth PG, Kottke T. Blue-Light-Induced Unfolding of the J alpha Helix Allows for the Dimerization of Aureochrome-LOV from the Diatom Phaeodactylum tricornutum. Biochemistry. 2013;52(18):3094-3101.
Herman, E., Sachse, M., Kroth, P. G., & Kottke, T. (2013). Blue-Light-Induced Unfolding of the J alpha Helix Allows for the Dimerization of Aureochrome-LOV from the Diatom Phaeodactylum tricornutum. Biochemistry, 52(18), 3094-3101. doi:10.1021/bi400197u
Herman, Elena, Sachse, Matthias, Kroth, Peter G., and Kottke, Tilman. 2013. “Blue-Light-Induced Unfolding of the J alpha Helix Allows for the Dimerization of Aureochrome-LOV from the Diatom Phaeodactylum tricornutum”. Biochemistry 52 (18): 3094-3101.
Herman, E., Sachse, M., Kroth, P. G., and Kottke, T. (2013). Blue-Light-Induced Unfolding of the J alpha Helix Allows for the Dimerization of Aureochrome-LOV from the Diatom Phaeodactylum tricornutum. Biochemistry 52, 3094-3101.
Herman, E., et al., 2013. Blue-Light-Induced Unfolding of the J alpha Helix Allows for the Dimerization of Aureochrome-LOV from the Diatom Phaeodactylum tricornutum. Biochemistry, 52(18), p 3094-3101.
E. Herman, et al., “Blue-Light-Induced Unfolding of the J alpha Helix Allows for the Dimerization of Aureochrome-LOV from the Diatom Phaeodactylum tricornutum”, Biochemistry, vol. 52, 2013, pp. 3094-3101.
Herman, E., Sachse, M., Kroth, P.G., Kottke, T.: Blue-Light-Induced Unfolding of the J alpha Helix Allows for the Dimerization of Aureochrome-LOV from the Diatom Phaeodactylum tricornutum. Biochemistry. 52, 3094-3101 (2013).
Herman, Elena, Sachse, Matthias, Kroth, Peter G., and Kottke, Tilman. “Blue-Light-Induced Unfolding of the J alpha Helix Allows for the Dimerization of Aureochrome-LOV from the Diatom Phaeodactylum tricornutum”. Biochemistry 52.18 (2013): 3094-3101.

20 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Variation in LOV Photoreceptor Activation Dynamics Probed by Time-Resolved Infrared Spectroscopy.
Iuliano JN, Gil AA, Laptenok SP, Hall CR, Tolentino Collado J, Lukacs A, Hag Ahmed SA, Abyad J, Daryaee T, Greetham GM, Sazanovich IV, Illarionov B, Bacher A, Fischer M, Towrie M, French JB, Meech SR, Tonge PJ., Biochemistry 57(5), 2018
PMID: 29239168
Small-angle X-ray scattering study of the kinetics of light-dark transition in a LOV protein.
Röllen K, Granzin J, Batra-Safferling R, Stadler AM., PLoS One 13(7), 2018
PMID: 30011332
Structure of a Native-like Aureochrome 1a LOV Domain Dimer from Phaeodactylum tricornutum.
Banerjee A, Herman E, Kottke T, Essen LO., Structure 24(1), 2016
PMID: 26688213
Allosteric communication between DNA-binding and light-responsive domains of diatom class I aureochromes.
Banerjee A, Herman E, Serif M, Maestre-Reyna M, Hepp S, Pokorny R, Kroth PG, Essen LO, Kottke T., Nucleic Acids Res 44(12), 2016
PMID: 27179025
Signaling States of a Short Blue-Light Photoreceptor Protein PpSB1-LOV Revealed from Crystal Structures and Solution NMR Spectroscopy.
Röllen K, Granzin J, Panwalkar V, Arinkin V, Rani R, Hartmann R, Krauss U, Jaeger KE, Willbold D, Batra-Safferling R., J Mol Biol 428(19), 2016
PMID: 27291287
How can EPR spectroscopy help to unravel molecular mechanisms of flavin-dependent photoreceptors?
Nohr D, Rodriguez R, Weber S, Schleicher E., Front Mol Biosci 2(), 2015
PMID: 26389123
Algal photoreceptors: in vivo functions and potential applications.
Kianianmomeni A, Hallmann A., Planta 239(1), 2014
PMID: 24081482
Molecular regulation of the diatom cell cycle.
Huysman MJ, Vyverman W, De Veylder L., J Exp Bot 65(10), 2014
PMID: 24277280
A novel cryptochrome in the diatom Phaeodactylum tricornutum influences the regulation of light-harvesting protein levels.
Juhas M, von Zadow A, Spexard M, Schmidt M, Kottke T, Büchel C., FEBS J 281(9), 2014
PMID: 24628952
Blue light-induced dimerization of monomeric aureochrome-1 enhances its affinity for the target sequence.
Hisatomi O, Nakatani Y, Takeuchi K, Takahashi F, Kataoka H., J Biol Chem 289(25), 2014
PMID: 24790107
Aureochrome 1 illuminated: structural changes of a transcription factor probed by molecular spectroscopy.
Kerruth S, Ataka K, Frey D, Schlichting I, Heberle J., PLoS One 9(7), 2014
PMID: 25058114
Photochemistry of flavoprotein light sensors.
Conrad KS, Manahan CC, Crane BR., Nat Chem Biol 10(10), 2014
PMID: 25229449
Aureochrome 1a is involved in the photoacclimation of the diatom Phaeodactylum tricornutum.
Schellenberger Costa B, Sachse M, Jungandreas A, Bartulos CR, Gruber A, Jakob T, Kroth PG, Wilhelm C., PLoS One 8(9), 2013
PMID: 24073211
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23621750
PubMed | Europe PMC

Suchen in

Google Scholar