Reductive Amination by recombinant Escherichia coli: Whole Cell Biotransformation of 2-keto-3-methylvalerate to L-isoleucine

Lorenz E, Klatte S, Wendisch VF (2013)
Journal of Biotechnology 168(3): 289-294.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Erscheinungsjahr
2013
Zeitschriftentitel
Journal of Biotechnology
Band
168
Ausgabe
3
Seite(n)
289-294
ISSN
0168-1656
Page URI
https://pub.uni-bielefeld.de/record/2605309

Zitieren

Lorenz E, Klatte S, Wendisch VF. Reductive Amination by recombinant Escherichia coli: Whole Cell Biotransformation of 2-keto-3-methylvalerate to L-isoleucine. Journal of Biotechnology. 2013;168(3):289-294.
Lorenz, E., Klatte, S., & Wendisch, V. F. (2013). Reductive Amination by recombinant Escherichia coli: Whole Cell Biotransformation of 2-keto-3-methylvalerate to L-isoleucine. Journal of Biotechnology, 168(3), 289-294. doi:10.1016/j.jbiotec.2013.06.014
Lorenz, Elisabeth, Klatte, Stephanie, and Wendisch, Volker F. 2013. “Reductive Amination by recombinant Escherichia coli: Whole Cell Biotransformation of 2-keto-3-methylvalerate to L-isoleucine”. Journal of Biotechnology 168 (3): 289-294.
Lorenz, E., Klatte, S., and Wendisch, V. F. (2013). Reductive Amination by recombinant Escherichia coli: Whole Cell Biotransformation of 2-keto-3-methylvalerate to L-isoleucine. Journal of Biotechnology 168, 289-294.
Lorenz, E., Klatte, S., & Wendisch, V.F., 2013. Reductive Amination by recombinant Escherichia coli: Whole Cell Biotransformation of 2-keto-3-methylvalerate to L-isoleucine. Journal of Biotechnology, 168(3), p 289-294.
E. Lorenz, S. Klatte, and V.F. Wendisch, “Reductive Amination by recombinant Escherichia coli: Whole Cell Biotransformation of 2-keto-3-methylvalerate to L-isoleucine”, Journal of Biotechnology, vol. 168, 2013, pp. 289-294.
Lorenz, E., Klatte, S., Wendisch, V.F.: Reductive Amination by recombinant Escherichia coli: Whole Cell Biotransformation of 2-keto-3-methylvalerate to L-isoleucine. Journal of Biotechnology. 168, 289-294 (2013).
Lorenz, Elisabeth, Klatte, Stephanie, and Wendisch, Volker F. “Reductive Amination by recombinant Escherichia coli: Whole Cell Biotransformation of 2-keto-3-methylvalerate to L-isoleucine”. Journal of Biotechnology 168.3 (2013): 289-294.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Whole-cell biocatalysts by design.
Lin B, Tao Y., Microb Cell Fact 16(1), 2017
PMID: 28610636
In vivo plug-and-play: a modular multi-enzyme single-cell catalyst for the asymmetric amination of ketoacids and ketones.
Farnberger JE, Lorenz E, Richter N, Wendisch VF, Kroutil W., Microb Cell Fact 16(1), 2017
PMID: 28754115
Role of L-alanine for redox self-sufficient amination of alcohols.
Klatte S, Wendisch VF., Microb Cell Fact 14(), 2015
PMID: 25612558
Whole cell biotransformation for reductive amination reactions.
Klatte S, Lorenz E, Wendisch VF., Bioengineered 5(1), 2014
PMID: 24406456
Redox self-sufficient whole cell biotransformation for amination of alcohols.
Klatte S, Wendisch VF., Bioorg Med Chem 22(20), 2014
PMID: 24894767

40 References

Daten bereitgestellt von Europe PubMed Central.

Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection
Baba, Molecular Systems Biology 2(), 2006
NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain.
Buhler B, Park JB, Blank LM, Schmid A., Appl. Environ. Microbiol. 74(5), 2008
PMID: 18192422
The ldhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli.
Bunch PK, Mat-Jan F, Lee N, Clark DP., Microbiology (Reading, Engl.) 143 ( Pt 1)(), 1997
PMID: 9025293
Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA.
Cohen SN, Chang AC, Hsu L., Proc. Natl. Acad. Sci. U.S.A. 69(8), 1972
PMID: 4559594
Regulation of acetohydroxy acid synthase in Corynebacterium glutamicum during fermentation of α-ketobutyrate to l-isoleucine
Eggeling, Applied Microbiology and Biotechnology 25(), 1987
The fruits of molecular physiology: engineering the -isoleucine biosynthesis pathway in Corynebacterium glutamicum
Eggeling, Journal of Biotechnology 56(), 1997
Improved product-per-glucose yields in P450-dependent propane biotransformations using engineered Escherichia coli.
Fasan R, Crook NC, Peters MW, Meinhold P, Buelter T, Landwehr M, Cirino PC, Arnold FH., Biotechnol. Bioeng. 108(3), 2010
PMID: 21246504
Amination of benzylic and cinnamic alcohols via a biocatalytic, aerobic, oxidation-transamination cascade
Fuchs, RSC Advances 2(), 2012
Kinetic mechanism of Bacillus subtilis L-alanine dehydrogenase.
Grimshaw CE, Cleland WW., Biochemistry 20(20), 1981
PMID: 6794611
Microbial production of l-leucine from α-ketoisocaproate by Corynebacterium glutamicum
Groeger, Applied Microbiology and Biotechnology 25(), 1987
Carrier-mediated glutamate secretion by Corynebacterium glutamicum under biotin limitation.
Gutmann M, Hoischen C, Kramer R., Biochim. Biophys. Acta 1112(1), 1992
PMID: 1358200
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Construction of an L-isoleucine overproducing strain of Escherichia coli K-12.
Hashiguchi K, Takesada H, Suzuki E, Matsui H., Biosci. Biotechnol. Biochem. 63(4), 1999
PMID: 10361680
Inducible L-alanine exporter encoded by the novel gene ygaW (alaE) in Escherichia coli.
Hori H, Yoneyama H, Tobe R, Ando T, Isogai E, Katsumata R., Appl. Environ. Microbiol. 77(12), 2011
PMID: 21531828
Subtoxic product levels limit the epoxidation capacity of recombinant E. coli by increasing microbial energy demands.
Kuhn D, Fritzsch FS, Zhang X, Wendisch VF, Blank LM, Buhler B, Schmid A., J. Biotechnol. 163(2), 2012
PMID: 22922011
Escherichia coli NADH dehydrogenase I, a minimal form of the mitochondrial complex I.
Leif H, Weidner U, Berger A, Spehr V, Braun M, van Heek P, Friedrich T, Ohnishi T, Weiss H., Biochem. Soc. Trans. 21(4), 1993
PMID: 8132107
Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum.
Marienhagen J, Kennerknecht N, Sahm H, Eggeling L., J. Bacteriol. 187(22), 2005
PMID: 16267288
Process and catalyst design objectives for specific redox biocatalysis.
Meyer D, Buhler B, Schmid A., Adv. Appl. Microbiol. 59(), 2006
PMID: 16829256

Patek, 2007
Mutations in NADH:ubiquinone oxidoreductase of Escherichia coli affect growth on mixed amino acids.
Pruss BM, Nelms JM, Park C, Wolfe AJ., J. Bacteriol. 176(8), 1994
PMID: 8157582
Construction of l-isoleucine overproducing strains of Corynebacterium glutamicum
Sahm, Naturwissenschaften 86(), 1999
Redox self-sufficient biocatalyst network for the amination of primary alcohols
Sattler, Angewandte Chemie International Edition 51(), 2012
Extrazelluläre Produktion und Affinitätsaufreinigung einer rekombinanten Ribonuclease mit Escherichia coli
Sommer, Chemie Ingenieur Technik 80(6), 2008
Analysis of an avtA::Mu d1(Ap lac) mutant: metabolic role of transaminase C.
Whalen WA, Berg CM., J. Bacteriol. 150(2), 1982
PMID: 7040341
Bergmeyer, methoden der enzymatischen analyse
Williamson, Verlag Chemie (), 1974
Production of L -alanine by metabolically engineered Escherichia coli.
Zhang X, Jantama K, Moore JC, Shanmugam KT, Ingram LO., Appl. Microbiol. Biotechnol. 77(2), 2007
PMID: 17874321
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23831557
PubMed | Europe PMC

Suchen in

Google Scholar