Ornithine cyclodeaminase-based proline production by *Corynebacterium glutamicum*

Vold Korgaard Jensen J, Wendisch VF (2013)
Microbial Cell Factories 12(63).

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
Background The soil bacterium Corynebacterium glutamicum, best known for its glutamate producing ability, is suitable as a producer of a variety of bioproducts. Glutamate is the precursor of the amino acid proline. Proline biosynthesis typically involves three enzymes and a spontaneous cyclisation reaction. Alternatively, proline can be synthesised from ornithine, an intermediate of arginine biosynthesis. The direct conversion of ornithine to proline is catalysed by ornithine cyclodeaminase. An ornithine overproducing platform strain with deletions of argR and argF (ORN1) has been employed for production of derived compounds such as putrescine. By heterologous expression of ocd this platform strain can be engineered further for proline production. Results Plasmid-based expression of ocd encoding the putative ornithine cyclodeaminase of C. glutamicum did not result in detectable proline accumulation in the culture medium. However, plasmid-based expression of ocd from Pseudomonas putida resulted in proline production with yields up to 0.31 ± 0.01 g proline/g glucose. Overexpression of the gene encoding a feedback-alleviated N-acetylglutamate kinase further increased proline production to 0.36 ± 0.01 g/g. In addition, feedback-alleviation of N-acetylglutamate kinase entailed growth-coupled production of proline and reduced the accumulation of by-products in the culture medium. Conclusions The product spectrum of the platform strain C. glutamicum ORN1 was expanded to include the amino acid L-proline. Upon further development of the ornithine overproducing platform strain, industrial production of amino acids of the glutamate family and derived bioproducts such as diamines might become within reach.
Erscheinungsjahr
Zeitschriftentitel
Microbial Cell Factories
Band
12
Ausgabe
63
ISSN
PUB-ID

Zitieren

Vold Korgaard Jensen J, Wendisch VF. Ornithine cyclodeaminase-based proline production by *Corynebacterium glutamicum*. Microbial Cell Factories. 2013;12(63).
Vold Korgaard Jensen, J., & Wendisch, V. F. (2013). Ornithine cyclodeaminase-based proline production by *Corynebacterium glutamicum*. Microbial Cell Factories, 12(63). doi:10.1186/1475-2859-12-63
Vold Korgaard Jensen, J., and Wendisch, V. F. (2013). Ornithine cyclodeaminase-based proline production by *Corynebacterium glutamicum*. Microbial Cell Factories 12.
Vold Korgaard Jensen, J., & Wendisch, V.F., 2013. Ornithine cyclodeaminase-based proline production by *Corynebacterium glutamicum*. Microbial Cell Factories, 12(63).
J. Vold Korgaard Jensen and V.F. Wendisch, “Ornithine cyclodeaminase-based proline production by *Corynebacterium glutamicum*”, Microbial Cell Factories, vol. 12, 2013.
Vold Korgaard Jensen, J., Wendisch, V.F.: Ornithine cyclodeaminase-based proline production by *Corynebacterium glutamicum*. Microbial Cell Factories. 12, (2013).
Vold Korgaard Jensen, Jaide, and Wendisch, Volker F. “Ornithine cyclodeaminase-based proline production by *Corynebacterium glutamicum*”. Microbial Cell Factories 12.63 (2013).
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2016-08-23T11:40:07Z

34 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Combined 1H-Detected Solid-State NMR Spectroscopy and Electron Cryotomography to Study Membrane Proteins across Resolutions in Native Environments.
Baker LA, Sinnige T, Schellenberger P, de Keyzer J, Siebert CA, Driessen AJM, Baldus M, Grünewald K., Structure 26(1), 2018
PMID: 29249608
Transport and metabolic engineering of the cell factory Corynebacterium glutamicum.
Pérez-García F, Wendisch VF., FEMS Microbiol Lett 365(16), 2018
PMID: 29982619
Physiological Response of Corynebacterium glutamicum to Increasingly Nutrient-Rich Growth Conditions.
Graf M, Zieringer J, Haas T, Nieß A, Blombach B, Takors R., Front Microbiol 9(), 2018
PMID: 30210489
Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum.
Zhao N, Qian L, Luo G, Zheng S., Appl Microbiol Biotechnol 102(22), 2018
PMID: 30218378
Fermentative Production of N-Methylglutamate From Glycerol by Recombinant Pseudomonas putida.
Mindt M, Walter T, Risse JM, Wendisch VF., Front Bioeng Biotechnol 6(), 2018
PMID: 30474025
A new genome-scale metabolic model of Corynebacterium glutamicum and its application.
Zhang Y, Cai J, Shang X, Wang B, Liu S, Chai X, Tan T, Zhang Y, Wen T., Biotechnol Biofuels 10(), 2017
PMID: 28680478
Functional Characterization of Four Putative δ1-Pyrroline-5-Carboxylate Reductases from Bacillus subtilis.
Forlani G, Nocek B, Chakravarthy S, Joachimiak A., Front Microbiol 8(), 2017
PMID: 28824574
Updates on industrial production of amino acids using Corynebacterium glutamicum.
Wendisch VF, Jorge JMP, Pérez-García F, Sgobba E., World J Microbiol Biotechnol 32(6), 2016
PMID: 27116971
Roles of export genes cgmA and lysE for the production of L-arginine and L-citrulline by Corynebacterium glutamicum.
Lubitz D, Jorge JM, Pérez-García F, Taniguchi H, Wendisch VF., Appl Microbiol Biotechnol 100(19), 2016
PMID: 27350619
Light-Controlled Cell Factories: Employing Photocaged Isopropyl-β-d-Thiogalactopyranoside for Light-Mediated Optimization of lac Promoter-Based Gene Expression and (+)-Valencene Biosynthesis in Corynebacterium glutamicum.
Binder D, Frohwitter J, Mahr R, Bier C, Grünberger A, Loeschcke A, Peters-Wendisch P, Kohlheyer D, Pietruszka J, Frunzke J, Jaeger KE, Wendisch VF, Drepper T., Appl Environ Microbiol 82(20), 2016
PMID: 27520809
Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum.
Lubitz D, Wendisch VF., BMC Microbiol 16(1), 2016
PMID: 27717325
Efficient hydroxyproline production from glucose in minimal media by Corynebacterium glutamicum.
Falcioni F, Bühler B, Schmid A., Biotechnol Bioeng 112(2), 2015
PMID: 25163732
Genome Mining of Streptomyces sp. Tü 6176: Characterization of the Nataxazole Biosynthesis Pathway.
Cano-Prieto C, García-Salcedo R, Sánchez-Hidalgo M, Braña AF, Fiedler HP, Méndez C, Salas JA, Olano C., Chembiochem 16(10), 2015
PMID: 25892546
Regulation of the pstSCAB operon in Corynebacterium glutamicum by the regulator of acetate metabolism RamB.
Sorger-Herrmann U, Taniguchi H, Wendisch VF., BMC Microbiol 15(), 2015
PMID: 26021728
Synthesis of chemicals by metabolic engineering of microbes.
Sun X, Shen X, Jain R, Lin Y, Wang J, Sun J, Wang J, Yan Y, Yuan Q., Chem Soc Rev 44(11), 2015
PMID: 25940754
Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production.
Bückle-Vallant V, Krause FS, Messerschmidt S, Eikmanns BJ., Appl Microbiol Biotechnol 98(1), 2014
PMID: 24169948
Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production.
Peters-Wendisch P, Götker S, Heider SA, Komati Reddy G, Nguyen AQ, Stansen KC, Wendisch VF., J Biotechnol 192 Pt B(), 2014
PMID: 24486440
Metabolic engineering of Corynebacterium glutamicum for glycolate production.
Zahoor A, Otten A, Wendisch VF., J Biotechnol 192 Pt B(), 2014
PMID: 24486442
Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum.
Frohwitter J, Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF., J Biotechnol 191(), 2014
PMID: 24910970
Optimization of the IPP Precursor Supply for the Production of Lycopene, Decaprenoxanthin and Astaxanthin by Corynebacterium glutamicum.
Heider SA, Wolf N, Hofemeier A, Peters-Wendisch P, Wendisch VF., Front Bioeng Biotechnol 2(), 2014
PMID: 25191655

42 References

Daten bereitgestellt von Europe PubMed Central.

Proline-catalyzed asymmetric reactions
AUTHOR UNKNOWN, 2002
Processes for producing L-proline by fermentation
AUTHOR UNKNOWN, 1989
Nitrogen metabolism and its regulation
AUTHOR UNKNOWN, 2005
The respiratory chain of Corynebacterium glutamicum.
Bott M, Niebisch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948635
Reactions involved in the conversion of ornithine to proline in Clostridia
AUTHOR UNKNOWN, 1969
Arginine catabolism in Agrobacterium strains: role of the Ti plasmid.
Dessaux Y, Petit A, Tempe J, Demarez M, Legrain C, Wiame JM., J. Bacteriol. 166(1), 1986
PMID: 3957872
Ornithine dissimilation by Treponema denticola
AUTHOR UNKNOWN, 1980
Catabolism of arginine, citrulline and ornithine by Pseudomonas and related bacteria.
Stalon V, Vander Wauven C, Momin P, Legrain C., J. Gen. Microbiol. 133(9), 1987
PMID: 3129535
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Microbial arginine biosynthesis: pathway, regulation and industrial production
AUTHOR UNKNOWN, 2007
Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway
AUTHOR UNKNOWN, 1996
Interaction of transcriptional repressor ArgR with transcriptional regulator FarR at the argB promoter region in Corynebacterium glutamicum.
Lee SY, Park JM, Lee JH, Chang ST, Park JS, Kim YH, Min J., Appl. Environ. Microbiol. 77(3), 2010
PMID: 21115700
Effect of increased glutamate availability on L-ornithine production in Corynebacterium glutamicum.
Hwang JH, Hwang GH, Cho JY., J. Microbiol. Biotechnol. 18(4), 2008
PMID: 18467864
Putrescine production by engineered Corynebacterium glutamicum.
Schneider J, Wendisch VF., Appl. Microbiol. Biotechnol. 88(4), 2010
PMID: 20661733
Ornithine cyclodeaminase: structure, mechanism of action, and implications for the mu-crystallin family.
Goodman JL, Wang S, Alam S, Ruzicka FJ, Frey PA, Wedekind JE., Biochemistry 43(44), 2004
PMID: 15518536
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
L-Glutamine as a nitrogen source for Corynebacterium glutamicum: derepression of the AmtR regulon and implications for nitrogen sensing.
Rehm N, Georgi T, Hiery E, Degner U, Schmiedl A, Burkovski A, Bott M., Microbiology (Reading, Engl.) 156(Pt 10), 2010
PMID: 20656783
Enhancement of ornithine production in proline-supplemented Corynebacterium glutamicum by ornithine cyclodeaminase.
Lee SY, Cho JY, Lee HJ, Kim YH, Min J., J. Microbiol. Biotechnol. 20(1), 2010
PMID: 20134243
The plant oncogene rolD encodes a functional ornithine cyclodeaminase.
Trovato M, Maras B, Linhares F, Costantino P., Proc. Natl. Acad. Sci. U.S.A. 98(23), 2001
PMID: 11687622
The Noc region of Ti plasmid C58 codes for arginase and ornithine cyclodeaminase.
Sans N, Schroder G, Schroder J., Eur. J. Biochem. 167(1), 1987
PMID: 3040404
Codon usage patterns in Corynebacterium glutamicum: mutational bias, natural selection and amino acid conservation
AUTHOR UNKNOWN, 2010
Taxonomical studies on glutamic acid producing bacteria
AUTHOR UNKNOWN, 1967
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791

AUTHOR UNKNOWN, 1989
Experiments
AUTHOR UNKNOWN, 2005
The design of optimum multifactorial experiments
AUTHOR UNKNOWN, 1946
Chapter 3: Two-level factorial design
AUTHOR UNKNOWN, 2007

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23806148
PubMed | Europe PMC

Suchen in

Google Scholar