The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases

Stolzenberger J, Lindner S, Wendisch VF (2013)
Microbiology 159(Pt_8): 1770-1781.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Erscheinungsjahr
2013
Zeitschriftentitel
Microbiology
Band
159
Ausgabe
Pt_8
Seite(n)
1770-1781
ISSN
1350-0872
eISSN
1465-2080
Page URI
https://pub.uni-bielefeld.de/record/2603050

Zitieren

Stolzenberger J, Lindner S, Wendisch VF. The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases. Microbiology. 2013;159(Pt_8):1770-1781.
Stolzenberger, J., Lindner, S., & Wendisch, V. F. (2013). The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases. Microbiology, 159(Pt_8), 1770-1781. doi:10.1099/mic.0.067314-0
Stolzenberger, Jessica, Lindner, Steffen, and Wendisch, Volker F. 2013. “The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases”. Microbiology 159 (Pt_8): 1770-1781.
Stolzenberger, J., Lindner, S., and Wendisch, V. F. (2013). The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases. Microbiology 159, 1770-1781.
Stolzenberger, J., Lindner, S., & Wendisch, V.F., 2013. The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases. Microbiology, 159(Pt_8), p 1770-1781.
J. Stolzenberger, S. Lindner, and V.F. Wendisch, “The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases”, Microbiology, vol. 159, 2013, pp. 1770-1781.
Stolzenberger, J., Lindner, S., Wendisch, V.F.: The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases. Microbiology. 159, 1770-1781 (2013).
Stolzenberger, Jessica, Lindner, Steffen, and Wendisch, Volker F. “The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases”. Microbiology 159.Pt_8 (2013): 1770-1781.

15 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

6-Phosphofructokinase and ribulose-5-phosphate 3-epimerase in methylotrophic Bacillus methanolicus ribulose monophosphate cycle.
Le SB, Heggeset TMB, Haugen T, Nærdal I, Brautaset T., Appl Microbiol Biotechnol 101(10), 2017
PMID: 28213736
High lactic acid and fructose production via Mn2+-mediated conversion of inulin by Lactobacillus paracasei.
Petrov K, Popova L, Petrova P., Appl Microbiol Biotechnol 101(11), 2017
PMID: 28337581
Quantitative metabolomics of the thermophilic methylotroph Bacillus methanolicus.
Carnicer M, Vieira G, Brautaset T, Portais JC, Heux S., Microb Cell Fact 15(), 2016
PMID: 27251037
Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol.
Müller JE, Heggeset TM, Wendisch VF, Vorholt JA, Brautaset T., Appl Microbiol Biotechnol 99(2), 2015
PMID: 25431011
Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization.
Whitaker WB, Sandoval NR, Bennett RK, Fast AG, Papoutsakis ET., Curr Opin Biotechnol 33(), 2015
PMID: 25796071
Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate.
Leßmeier L, Pfeifenschneider J, Carnicer M, Heux S, Portais JC, Wendisch VF., Appl Microbiol Biotechnol 99(23), 2015
PMID: 26276544
Four Components of the Conjugated Redox System in Organisms: Carbon, Nitrogen, Sulfur, Oxygen.
Tereshina EV, Laskavy VN, Ivanenko SI., Biochemistry (Mosc) 80(9), 2015
PMID: 26555471
Proteomic analysis of the thermophilic methylotroph Bacillus methanolicus MGA3.
Müller JE, Litsanov B, Bortfeld-Miller M, Trachsel C, Grossmann J, Brautaset T, Vorholt JA., Proteomics 14(6), 2014
PMID: 24452867

60 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, J. Gen. Appl. Microbiol. 13(), 1967
Bacterial oxidation of methane and methanol.
Anthony C., Adv. Microb. Physiol. 27(), 1986
PMID: 3020939
Properties of an NAD(H)-containing methanol dehydrogenase and its activator protein from Bacillus methanolicus.
Arfman N, Hektor HJ, Bystrykh LV, Govorukhina NI, Dijkhuizen L, Frank J., Eur. J. Biochem. 244(2), 1997
PMID: 9119008

AUTHOR UNKNOWN, Meth. Enzymol. 90(), 1982
Role of the Bacillus methanolicus citrate synthase II gene, citY, in regulating the secretion of glutamate in L-lysine-secreting mutants.
Brautaset T, Williams MD, Dillingham RD, Kaufmann C, Bennaars A, Crabbe E, Flickinger MC., Appl. Environ. Microbiol. 69(7), 2003
PMID: 12839772
Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus.
Brautaset T, Jakobsen M OM, Flickinger MC, Valla S, Ellingsen TE., J. Bacteriol. 186(5), 2004
PMID: 14973041
Bacillus methanolicus: a candidate for industrial production of amino acids from methanol at 50 degrees C.
Brautaset T, Jakobsen OM, Josefsen KD, Flickinger MC, Ellingsen TE., Appl. Microbiol. Biotechnol. 74(1), 2007
PMID: 17216461
Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase I and II and their roles for L-lysine production from methanol at 50 degrees C.
Brautaset T, Jakobsen OM, Degnes KF, Netzer R, Naerdal I, Krog A, Dillingham R, Flickinger MC, Ellingsen TE., Appl. Microbiol. Biotechnol. 87(3), 2010
PMID: 20372887
Impaired tricarboxylic acid cycle activity in mouse livers lacking cytosolic phosphoenolpyruvate carboxykinase.
Burgess SC, Hausler N, Merritt M, Jeffrey FM, Storey C, Milde A, Koshy S, Lindner J, Magnuson MA, Malloy CR, Sherry AD., J. Biol. Chem. 279(47), 2004
PMID: 15347677
Genetic manipulation of Bacillus methanolicus, a gram-positive, thermotolerant methylotroph.
Cue D, Lam H, Dillingham RL, Hanson RS, Flickinger MC., Appl. Environ. Microbiol. 63(4), 1997
PMID: 9097439
Cloning, expression, and sequence analysis of the Bacillus methanolicus C1 methanol dehydrogenase gene.
de Vries GE, Arfman N, Terpstra P, Dijkhuizen L., J. Bacteriol. 174(16), 1992
PMID: 1644761

AUTHOR UNKNOWN, HANDBOOK OF CORYNEBACTERIUM GLUTAMICUM (), 0
Cloning, expression, purification and characterization of fructose-1,6-bisphosphate aldolase from Anoxybacillus gonensis G2.
Ertunga NS, Colak A, Belduz AO, Canakci S, Karaoglu H, Sandalli C., J. Biochem. 141(6), 2007
PMID: 17400540
D-Fructose 1,6-biphosphate aldolase from the dipteran Ceratitis capitata. Purification, physiocochemical and enzymic properties.
Fernandez-Sousa JM, Gavilanes FG, Gavilanes JG, Paredes JA., Arch. Biochem. Biophys. 188(2), 1978
PMID: 28092
Characterization, kinetics, and crystal structures of fructose-1,6-bisphosphate aldolase from the human parasite, Giardia lamblia.
Galkin A, Kulakova L, Melamud E, Li L, Wu C, Mariano P, Dunaway-Mariano D, Nash TE, Herzberg O., J. Biol. Chem. 282(7), 2006
PMID: 17166851
Two Distinct Aldolases of Class II Type in the Cyanoplasts and in the Cytosol of the Alga Cyanophora paradoxa.
Gross W, Bayer MG, Schnarrenberger C, Gebhart UB, Maier TL, Schenk H., Plant Physiol. 105(4), 1994
PMID: 12232294

AUTHOR UNKNOWN, DNA CLONING A PRACTICAL APPROACH 1(), 1985
Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol.
Heggeset TM, Krog A, Balzer S, Wentzel A, Ellingsen TE, Brautaset T., Appl. Environ. Microbiol. 78(15), 2012
PMID: 22610424
Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus.
Jakobsen OM, Brautaset T, Degnes KF, Heggeset TM, Balzer S, Flickinger MC, Valla S, Ellingsen TE., Appl. Environ. Microbiol. 75(3), 2008
PMID: 19060158
The physiological role of the ribulose monophosphate pathway in bacteria and archaea.
Kato N, Yurimoto H, Thauer RK., Biosci. Biotechnol. Biochem. 70(1), 2006
PMID: 16428816

AUTHOR UNKNOWN, PLoS ONE 8(), 2013
Evaluation of four microbial Class II fructose 1,6-bisphosphate aldolase enzymes for use as biocatalysts.
Labbe G, de Groot S, Rasmusson T, Milojevic G, Dmitrienko GI, Guillemette JG., Protein Expr. Purif. 80(2), 2011
PMID: 21763425
NCgl2620 encodes a class II polyphosphate kinase in Corynebacterium glutamicum.
Lindner SN, Vidaurre D, Willbold S, Schoberth SM, Wendisch VF., Appl. Environ. Microbiol. 73(15), 2007
PMID: 17545325
Nucleotide sequences of the genes encoding fructosebisphosphatase and phosphoribulokinase from Xanthobacter flavus H4-14.
Meijer WG, Enequist HG, Terpstra P, Dijkhuizen L., J. Gen. Microbiol. 136(11), 1990
PMID: 1964170
Multiple forms of fructose diphosphate aldolase in mammalian tissues.
Penhoet E, Rajkumar T, Rutter WJ., Proc. Natl. Acad. Sci. U.S.A. 56(4), 1966
PMID: 5230152
C3-carboxylation as an anaplerotic reaction in phosphoenolpyruvate carboxylase-deficient Corynebacterium glutamicum.
Peters-Wendisch PG, Wendisch VF, de Graaf AA, Eikmanns BJ, Sahm H., Arch. Microbiol. 165(6), 1996
PMID: 8661932
Conserved residues in the mechanism of the E. coli Class II FBP-aldolase.
Plater AR, Zgiby SM, Thomson GJ, Qamar S, Wharton CW, Berry A., J. Mol. Biol. 285(2), 1999
PMID: 9878448

Pluschkell, Microbiology (Reading, Engl.) 148(10), 2002
Characterization of recombinant fructose-1,6-bisphosphate aldolase from Methylococcus capsulatus Bath.
Rozova ON, Khmelenina VN, Mustakhimov II, Reshetnikov AS, Trotsenko YA., Biochemistry Mosc. 75(7), 2010
PMID: 20673213
EVOLUTION OF ALDOLASE.
RUTTER WJ., Fed. Proc. 23(), 1964
PMID: 14236133
Properties of fructose 1,6-diphosphate aldolases from spores and vegetative cells of Bacillus cereus.
Sadoff HL, Hitchins AD, Celikkol E., J. Bacteriol. 98(3), 1969
PMID: 4977985
L-lysine production at 50 degrees C by mutants of a newly isolated and characterized methylotrophic Bacillus sp.
Schendel FJ, Bremmon CE, Flickinger MC, Guettler M, Hanson RS., Appl. Environ. Microbiol. 56(4), 1990
PMID: 2111119
Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria.
Schrader J, Schilling M, Holtmann D, Sell D, Filho MV, Marx A, Vorholt JA., Trends Biotechnol. 27(2), 2008
PMID: 19111927
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
Use of T7 RNA polymerase to direct expression of cloned genes.
Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW., Meth. Enzymol. 185(), 1990
PMID: 2199796
The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG., Nucleic Acids Res. 25(24), 1997
PMID: 9396791

AUTHOR UNKNOWN, Meth. Enzymol. 90(), 1982
Material in PUB:
Teil dieser Dissertation
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23760818
PubMed | Europe PMC

Suchen in

Google Scholar