Hydrophobicity-driven self-assembly of protein and silver nanoparticles for protein detection using surface-enhanced Raman scattering

Kahraman M, Balz BN, Wachsmann-Hogiu S (2013)
The Analyst 138(10): 2906-2913.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ;
Abstract / Bemerkung
Surface-enhanced Raman scattering (SERS) is a promising analytical technique for the detection and characterization of biological molecules and structures. The role of hydrophobic and hydrophilic surfaces in the self-assembly of protein-metallic nanoparticle structures for label-free protein detection is demonstrated. Aggregation is driven by both the hydrophobicity of the surface as well as the charge of the proteins. The best conditions for obtaining a reproducible SERS signal that allows for sensitive, label-free protein detection are provided by the use of hydrophobic surfaces and 16 x 10(11) NPs per mL. A detection limit of approximately 0.5 mu g mL(-1) is achieved regardless of the proteins' charge properties and size. The developed method is simple and can be used for reproducible and sensitive detection and characterization of a wide variety of biological molecules and various structures with different sizes and charge status.
Erscheinungsjahr
Zeitschriftentitel
The Analyst
Band
138
Ausgabe
10
Seite(n)
2906-2913
ISSN
eISSN
PUB-ID

Zitieren

Kahraman M, Balz BN, Wachsmann-Hogiu S. Hydrophobicity-driven self-assembly of protein and silver nanoparticles for protein detection using surface-enhanced Raman scattering. The Analyst. 2013;138(10):2906-2913.
Kahraman, M., Balz, B. N., & Wachsmann-Hogiu, S. (2013). Hydrophobicity-driven self-assembly of protein and silver nanoparticles for protein detection using surface-enhanced Raman scattering. The Analyst, 138(10), 2906-2913. doi:10.1039/c3an00025g
Kahraman, M., Balz, B. N., and Wachsmann-Hogiu, S. (2013). Hydrophobicity-driven self-assembly of protein and silver nanoparticles for protein detection using surface-enhanced Raman scattering. The Analyst 138, 2906-2913.
Kahraman, M., Balz, B.N., & Wachsmann-Hogiu, S., 2013. Hydrophobicity-driven self-assembly of protein and silver nanoparticles for protein detection using surface-enhanced Raman scattering. The Analyst, 138(10), p 2906-2913.
M. Kahraman, B.N. Balz, and S. Wachsmann-Hogiu, “Hydrophobicity-driven self-assembly of protein and silver nanoparticles for protein detection using surface-enhanced Raman scattering”, The Analyst, vol. 138, 2013, pp. 2906-2913.
Kahraman, M., Balz, B.N., Wachsmann-Hogiu, S.: Hydrophobicity-driven self-assembly of protein and silver nanoparticles for protein detection using surface-enhanced Raman scattering. The Analyst. 138, 2906-2913 (2013).
Kahraman, Mehmet, Balz, Ben Niklas, and Wachsmann-Hogiu, Sebastian. “Hydrophobicity-driven self-assembly of protein and silver nanoparticles for protein detection using surface-enhanced Raman scattering”. The Analyst 138.10 (2013): 2906-2913.

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

SERS detection of Biomolecules at Physiological pH via aggregation of Gold Nanorods mediated by Optical Forces and Plasmonic Heating.
Fazio B, D'Andrea C, Foti A, Messina E, Irrera A, Donato MG, Villari V, Micali N, Maragò OM, Gucciardi PG., Sci Rep 6(), 2016
PMID: 27246267
Concave gold nanocube assemblies as nanotraps for surface-enhanced Raman scattering-based detection of proteins.
Matteini P, de Angelis M, Ulivi L, Centi S, Pini R., Nanoscale 7(8), 2015
PMID: 25563172
A hanging plasmonic droplet: three-dimensional SERS hotspots for a highly sensitive multiplex detection of amino acids.
Wang H, Fang J, Xu J, Wang F, Sun B, He S, Sun G, Liu H., Analyst 140(9), 2015
PMID: 25799000
Photonic Crystal Hydrogel Enhanced Plasmonic Staining for Multiplexed Protein Analysis.
Mu Z, Zhao X, Huang Y, Lu M, Gu Z., Small 11(45), 2015
PMID: 26436833

59 References

Daten bereitgestellt von Europe PubMed Central.

Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer.
Li J, Zhang Z, Rosenzweig J, Wang YY, Chan DW., Clin. Chem. 48(8), 2002
PMID: 12142387
Current evaluation of the tissue localization and diagnostic utility of prostate specific membrane antigen.
Murphy GP, Elgamal AA, Su SL, Bostwick DG, Holmes EH., Cancer 83(11), 1998
PMID: 9840525
Surface-enhanced Raman scattering for protein detection.
Han XX, Zhao B, Ozaki Y., Anal Bioanal Chem 394(7), 2009
PMID: 19267242

Jeanmaire, J. Electroanal. Chem. 84(), 1977

Fleischmann, Chem. Phys. Lett. 26(), 1974

Albrecht, J. Am. Chem. Soc. 99(), 1977

Kneipp, Phys. Rev. Lett. 78(), 1997

Cam, J. Raman Spectrosc. 41(), 2010

Herne, J. Am. Chem. Soc. 113(), 1991

Mitchell, J. Raman Spectrosc. 39(), 2008
Aromatic amino acids providing characteristic motifs in the Raman and SERS spectroscopy of peptides.
Wei F, Zhang D, Halas NJ, Hartgerink JD., J Phys Chem B 112(30), 2008
PMID: 18610961

Stewart, Spectrochim. Acta, Part A 55(), 1999
Analytical technique for label-free multi-protein detection based on Western blot and surface-enhanced Raman scattering.
Han XX, Jia HY, Wang YF, Lu ZC, Wang CX, Xu WQ, Zhao B, Ozaki Y., Anal. Chem. 80(8), 2008
PMID: 18290672
Protein-mediated sandwich strategy for surface-enhanced Raman scattering: application to versatile protein detection.
Han XX, Kitahama Y, Itoh T, Wang CX, Zhao B, Ozaki Y., Anal. Chem. 81(9), 2009
PMID: 19361230
Direct detection of aptamer-thrombin binding via surface-enhanced Raman spectroscopy.
Pagba CV, Lane SM, Cho H, Wachsmann-Hogiu S., J Biomed Opt 15(4), 2010
PMID: 20799837
Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection.
Cao YC, Jin R, Mirkin CA., Science 297(5586), 2002
PMID: 12202825
Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate.
Shanmukh S, Jones L, Driskell J, Zhao Y, Dluhy R, Tripp RA., Nano Lett. 6(11), 2006
PMID: 17090104
Layer-by-layer coating of bacteria with noble metal nanoparticles for surface-enhanced Raman scattering.
Kahraman M, Zamaleeva AI, Fakhrullin RF, Culha M., Anal Bioanal Chem 395(8), 2009
PMID: 19795108
Characterization of thermophilic bacteria using surface-enhanced Raman scattering.
Culha M, Adiguzel A, Yazici MM, Kahraman M, Sahin F, Gulluce M., Appl Spectrosc 62(11), 2008
PMID: 19007464
Convective assembly of bacteria for surface-enhanced Raman scattering.
Kahraman M, Yazici MM, Sahin F, Culha M., Langmuir 24(3), 2008
PMID: 18179261
Characterization of the surface enhanced raman scattering (SERS) of bacteria.
Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G 2nd, Ziegler LD., J Phys Chem B 109(1), 2005
PMID: 16851017
Chemical probing of single cancer cells with gold nanoaggregates by surface-enhanced Raman scattering.
Tang HW, Yang XB, Kirkham J, Smith DA., Appl Spectrosc 62(10), 2008
PMID: 18926013

Kneipp, Nanomedicine: Nanotechnology, Biology and Medicine 6(), 2010
Surface-enhanced Raman scattering of rat tissues.
Aydin O, Kahraman M, Kilic E, Culha M., Appl Spectrosc 63(6), 2009
PMID: 19531293
Differentiation of healthy brain tissue and tumors using surface-enhanced Raman scattering.
Aydin O, Altas M, Kahraman M, Bayrak OF, Culha M., Appl Spectrosc 63(10), 2009
PMID: 19843358

Zho, J. Raman Spectrosc. 43(), 2012

Lee, J. Phys. Chem. 86(), 1982

Creighton, J. Chem. Soc., Faraday Trans. 2 75(), 1979

Kubo, Langmuir 18(), 2002

Hossain, J. Lumin. 122–123(), 2007

Lu, Chem. Mater. 17(), 2005

Emory, J. Am. Chem. Soc. 120(), 1998

Jensen, J. Cluster Sci. 10(), 1999

Zeman, J. Phys. Chem. 91(), 1987
Surface enhanced Raman scattering effects of silver colloids with different shapes.
Zhang J, Li X, Sun X, Li Y., J Phys Chem B 109(25), 2005
PMID: 16852551
Role of nanoparticle surface charge in surface-enhanced Raman scattering.
Alvarez-Puebla RA, Arceo E, Goulet PJ, Garrido JJ, Aroca RF., J Phys Chem B 109(9), 2005
PMID: 16851426
Comparison of surface-enhanced resonance Raman scattering from unaggregated and aggregated nanoparticles.
Faulds K, Littleford RE, Graham D, Dent G, Smith WE., Anal. Chem. 76(3), 2004
PMID: 14750851

Shipway, Langmuir 16(), 2000

Wei, Appl. Surf. Sci. 240(), 2005

Kneipp, J. Phys.: Condens. Matter 14(), 2002
Ultrasensitive chemical analysis by Raman spectroscopy.
Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS., Chem. Rev. 99(10), 1999
PMID: 11749507

Kneipp, Appl. Spectrosc. 52(), 1998
Silver nanoparticle thin films with nanocavities for surface-enhanced Raman scattering.
Kahraman M, Tokman N, Culha M., Chemphyschem 9(6), 2008
PMID: 18366038

Culha, J. Phys. Chem. C 112(), 2008

Ngola, J. Raman Spectrosc. 39(), 2008
Poly-L-lysine-coated silver nanoparticles as positively charged substrates for surface-enhanced Raman scattering.
Marsich L, Bonifacio A, Mandal S, Krol S, Beleites C, Sergo V., Langmuir 28(37), 2012
PMID: 22958086

De, Nat. Photonics 5(), 2011

Emory, J. Phys. Chem. B 102(), 1998

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23529344
PubMed | Europe PMC

Suchen in

Google Scholar