Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating

Lorenz-Fonfria VA, Resler T, Krause N, Nack M, Gossing M, Fischer von Mollard G, Bamann C, Bamberg E, Schlesinger R, Heberle J (2013)
Proceedings Of The National Academy Of Sciences 110(14): E1273-E1281.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Lorenz-Fonfria, Victor A.; Resler, Tom; Krause, Nils; Nack, Melanie; Gossing, MichaelUniBi; Fischer von Mollard, GabrieleUniBi ; Bamann, Christian; Bamberg, Ernst; Schlesinger, Ramona; Heberle, Joachim
Abstract / Bemerkung
The discovery of the light-gated ion channel channelrhodopsin (ChR) set the stage for the novel field of optogenetics, where cellular processes are controlled by light. However, the underlying molecular mechanism of light-induced cation permeation in ChR2 remains unknown. Here, we have traced the structural changes of ChR2 by time-resolved FTIR spectroscopy, complemented by functional electrophysiological measurements. We have resolved the vibrational changes associated with the open states of the channel (P-2(390) and P-3(520)) and characterized several proton transfer events. Analysis of the amide I vibrations suggests a transient increase in hydration of transmembrane a-helices with a t(1/2) = 60 mu s, which tallies with the onset of cation permeation. Aspartate 253 accepts the proton released by the Schiff base (t(1/2) = 10 mu s), with the latter being reprotonated by aspartic acid 156 (t(1/2) = 2 ms). The internal proton acceptor and donor groups, corresponding to D212 and D115 in bacteriorhodopsin, are clearly different from other microbial rhodopsins, indicating that their spatial position in the protein was relocated during evolution. Previous conclusions on the involvement of glutamic acid 90 in channel opening are ruled out by demonstrating that E90 deprotonates exclusively in the nonconductive P-4(480) state. Our results merge into a mechanistic proposal that relates the observed proton transfer reactions and the protein conformational changes to the gating of the cation channel.
protein; photosensory; retinal; membrane protein; time-resolved IR; step scan
Proceedings Of The National Academy Of Sciences
Page URI


Lorenz-Fonfria VA, Resler T, Krause N, et al. Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating. Proceedings Of The National Academy Of Sciences. 2013;110(14):E1273-E1281.
Lorenz-Fonfria, V. A., Resler, T., Krause, N., Nack, M., Gossing, M., Fischer von Mollard, G., Bamann, C., et al. (2013). Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating. Proceedings Of The National Academy Of Sciences, 110(14), E1273-E1281. doi:10.1073/pnas.1219502110
Lorenz-Fonfria, V. A., Resler, T., Krause, N., Nack, M., Gossing, M., Fischer von Mollard, G., Bamann, C., Bamberg, E., Schlesinger, R., and Heberle, J. (2013). Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating. Proceedings Of The National Academy Of Sciences 110, E1273-E1281.
Lorenz-Fonfria, V.A., et al., 2013. Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating. Proceedings Of The National Academy Of Sciences, 110(14), p E1273-E1281.
V.A. Lorenz-Fonfria, et al., “Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating”, Proceedings Of The National Academy Of Sciences, vol. 110, 2013, pp. E1273-E1281.
Lorenz-Fonfria, V.A., Resler, T., Krause, N., Nack, M., Gossing, M., Fischer von Mollard, G., Bamann, C., Bamberg, E., Schlesinger, R., Heberle, J.: Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating. Proceedings Of The National Academy Of Sciences. 110, E1273-E1281 (2013).
Lorenz-Fonfria, Victor A., Resler, Tom, Krause, Nils, Nack, Melanie, Gossing, Michael, Fischer von Mollard, Gabriele, Bamann, Christian, Bamberg, Ernst, Schlesinger, Ramona, and Heberle, Joachim. “Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating”. Proceedings Of The National Academy Of Sciences 110.14 (2013): E1273-E1281.

57 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Unifying photocycle model for light adaptation and temporal evolution of cation conductance in channelrhodopsin-2.
Kuhne J, Vierock J, Tennigkeit SA, Dreier MA, Wietek J, Petersen D, Gavriljuk K, El-Mashtoly SF, Hegemann P, Gerwert K., Proc Natl Acad Sci U S A 116(19), 2019
PMID: 31004059
Protein dynamics observed by tunable mid-IR quantum cascade lasers across the time range from 10ns to 1s.
Schultz BJ, Mohrmann H, Lorenz-Fonfria VA, Heberle J., Spectrochim Acta A Mol Biomol Spectrosc 188(), 2018
PMID: 28110813
Molecular details of the unique mechanism of chloride transport by a cyanobacterial rhodopsin.
Harris A, Saita M, Resler T, Hughes-Visentin A, Maia R, Pranga-Sellnau F, Bondar AN, Heberle J, Brown LS., Phys Chem Chem Phys 20(5), 2018
PMID: 29057415
Photoreceptors Take Charge: Emerging Principles for Light Sensing.
Kottke T, Xie A, Larsen DS, Hoff WD., Annu Rev Biophys (), 2018
PMID: 29539272
Retinal isomerization and water-pore formation in channelrhodopsin-2.
Ardevol A, Hummer G., Proc Natl Acad Sci U S A 115(14), 2018
PMID: 29555736
Photocycle of Sensory Rhodopsin II from Halobacterium salinarum (HsSRII): Mutation of D103 Accelerates M Decay and Changes the Decay Pathway of a 13-cis O-like Species.
Dai G, Geng X, Chaoluomeng, Tamogami J, Kikukawa T, Demura M, Kamo N, Iwasa T., Photochem Photobiol 94(4), 2018
PMID: 29512821
An Atomistic Model of a Precursor State of Light-Induced Channel Opening of Channelrhodopsin.
Cheng C, Kamiya M, Takemoto M, Ishitani R, Nureki O, Yoshida N, Hayashi S., Biophys J 115(7), 2018
PMID: 30236783
Mutational analysis of the conserved carboxylates of anion channelrhodopsin-2 (ACR2) expressed in Escherichia coli and their roles in anion transport.
Kojima K, Watanabe HC, Doi S, Miyoshi N, Kato M, Ishikita H, Sudo Y., Biophys Physicobiol 15(), 2018
PMID: 30349802
An inhibitory role of Arg-84 in anion channelrhodopsin-2 expressed in Escherichia coli.
Doi S, Tsukamoto T, Yoshizawa S, Sudo Y., Sci Rep 7(), 2017
PMID: 28150799
Atomistic Study of Intramolecular Interactions in the Closed-State Channelrhodopsin Chimera, C1C2.
VanGordon MR, Gyawali G, Rick SW, Rempe SB., Biophys J 112(5), 2017
PMID: 28297653
Complex Photochemistry within the Green-Absorbing Channelrhodopsin ReaChR.
Krause BS, Grimm C, Kaufmann JCD, Schneider F, Sakmar TP, Bartl FJ, Hegemann P., Biophys J 112(6), 2017
PMID: 28355544
Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications.
Govorunova EG, Sineshchekov OA, Li H, Spudich JL., Annu Rev Biochem 86(), 2017
PMID: 28301742
Structural Changes in an Anion Channelrhodopsin: Formation of the K and L Intermediates at 80 K.
Yi A, Li H, Mamaeva N, Fernandez De Cordoba RE, Lugtenburg J, DeGrip WJ, Spudich JL, Rothschild KJ., Biochemistry 56(16), 2017
PMID: 28350445
FTIR Analysis of a Light-driven Inward Proton-pumping Rhodopsin at 77 K.
Ito S, Sugita S, Inoue K, Kandori H., Photochem Photobiol 93(6), 2017
PMID: 28380687
Proton transfer reactions in the red light-activatable channelrhodopsin variant ReaChR and their relevance for its function.
Kaufmann JCD, Krause BS, Grimm C, Ritter E, Hegemann P, Bartl FJ., J Biol Chem 292(34), 2017
PMID: 28659342
Applications of Light Emitting Diodes in Health Care.
Dong J, Xiong D., Ann Biomed Eng 45(11), 2017
PMID: 28948402
Bacteriorhodopsin-like channelrhodopsins: Alternative mechanism for control of cation conductance.
Sineshchekov OA, Govorunova EG, Li H, Spudich JL., Proc Natl Acad Sci U S A 114(45), 2017
PMID: 29078348
Structural insights into ion conduction by channelrhodopsin 2.
Volkov O, Kovalev K, Polovinkin V, Borshchevskiy V, Bamann C, Astashkin R, Marin E, Popov A, Balandin T, Willbold D, Büldt G, Bamberg E, Gordeliy V., Science 358(6366), 2017
PMID: 29170206
Active site structure and absorption spectrum of channelrhodopsin-2 wild-type and C128T mutant.
Guo Y, Beyle FE, Bold BM, Watanabe HC, Koslowski A, Thiel W, Hegemann P, Marazzi M, Elstner M., Chem Sci 7(6), 2016
PMID: 30155032
Resonance Raman Study of an Anion Channelrhodopsin: Effects of Mutations near the Retinylidene Schiff Base.
Yi A, Mamaeva N, Li H, Spudich JL, Rothschild KJ., Biochemistry 55(16), 2016
PMID: 27039989
The photochemistry of sodium ion pump rhodopsin observed by watermarked femto- to submillisecond stimulated Raman spectroscopy.
Hontani Y, Inoue K, Kloz M, Kato Y, Kandori H, Kennis JT., Phys Chem Chem Phys 18(35), 2016
PMID: 27550793
Light-induced helix movements in channelrhodopsin-2.
Müller M, Bamann C, Bamberg E, Kühlbrandt W., J Mol Biol 427(2), 2015
PMID: 25451024
Comparison of the structural changes occurring during the primary phototransition of two different channelrhodopsins from Chlamydomonas algae.
Ogren JI, Yi A, Mamaev S, Li H, Lugtenburg J, DeGrip WJ, Spudich JL, Rothschild KJ., Biochemistry 54(2), 2015
PMID: 25469620
Biophysics of Channelrhodopsin.
Schneider F, Grimm C, Hegemann P., Annu Rev Biophys 44(), 2015
PMID: 26098512
Considering optogenetic stimulation for cochlear implants.
Jeschke M, Moser T., Hear Res 322(), 2015
PMID: 25601298
Kinetic evaluation of photosensitivity in bi-stable variants of chimeric channelrhodopsins.
Hososhima S, Sakai S, Ishizuka T, Yawo H., PLoS One 10(3), 2015
PMID: 25789474
Chimeras of channelrhodopsin-1 and -2 from Chlamydomonas reinhardtii exhibit distinctive light-induced structural changes from channelrhodopsin-2.
Inaguma A, Tsukamoto H, Kato HE, Kimura T, Ishizuka T, Oishi S, Yawo H, Nureki O, Furutani Y., J Biol Chem 290(18), 2015
PMID: 25796616
Platymonas subcordiformis Channelrhodopsin-2 Function: I. THE PHOTOCHEMICAL REACTION CYCLE.
Szundi I, Li H, Chen E, Bogomolni R, Spudich JL, Kliger DS., J Biol Chem 290(27), 2015
PMID: 25971972
Molecular Dynamics of Channelrhodopsin at the Early Stages of Channel Opening.
Takemoto M, Kato HE, Koyama M, Ito J, Kamiya M, Hayashi S, Maturana AD, Deisseroth K, Ishitani R, Nureki O., PLoS One 10(6), 2015
PMID: 26114863
Kinetic and vibrational isotope effects of proton transfer reactions in channelrhodopsin-2.
Resler T, Schultz BJ, Lórenz-Fonfría VA, Schlesinger R, Heberle J., Biophys J 109(2), 2015
PMID: 26200864
Time-resolved infrared spectroscopic techniques as applied to channelrhodopsin.
Ritter E, Puskar L, Bartl FJ, Aziz EF, Hegemann P, Schade U., Front Mol Biosci 2(), 2015
PMID: 26217670
The primary photoreaction of channelrhodopsin-1: wavelength dependent photoreactions induced by ground-state heterogeneity.
Stensitzki T, Muders V, Schlesinger R, Heberle J, Heyne K., Front Mol Biosci 2(), 2015
PMID: 26258130
Enlightening the photoactive site of channelrhodopsin-2 by DNP-enhanced solid-state NMR spectroscopy.
Becker-Baldus J, Bamann C, Saxena K, Gustmann H, Brown LJ, Brown RC, Reiter C, Bamberg E, Wachtveitl J, Schwalbe H, Glaubitz C., Proc Natl Acad Sci U S A 112(32), 2015
PMID: 26216996
The Signaling State of Orange Carotenoid Protein.
Maksimov EG, Shirshin EA, Sluchanko NN, Zlenko DV, Parshina EY, Tsoraev GV, Klementiev KE, Budylin GS, Schmitt FJ, Friedrich T, Fadeev VV, Paschenko VZ, Rubin AB., Biophys J 109(3), 2015
PMID: 26244741
Temporal evolution of helix hydration in a light-gated ion channel correlates with ion conductance.
Lórenz-Fonfría VA, Bamann C, Resler T, Schlesinger R, Bamberg E, Heberle J., Proc Natl Acad Sci U S A 112(43), 2015
PMID: 26460012
Mechanism divergence in microbial rhodopsins.
Spudich JL, Sineshchekov OA, Govorunova EG., Biochim Biophys Acta 1837(5), 2014
PMID: 23831552
Of ion pumps, sensors and channels - perspectives on microbial rhodopsins between science and history.
Grote M, Engelhard M, Hegemann P., Biochim Biophys Acta 1837(5), 2014
PMID: 23994288
The role of protein-bound water molecules in microbial rhodopsins.
Gerwert K, Freier E, Wolf S., Biochim Biophys Acta 1837(5), 2014
PMID: 24055285
Bamann C, Bamberg E, Wachtveitl J, Glaubitz C., Biochim Biophys Acta 1837(5), 2014
PMID: 24060527
Channelrhodopsin unchained: structure and mechanism of a light-gated cation channel.
Lórenz-Fonfría VA, Heberle J., Biochim Biophys Acta 1837(5), 2014
PMID: 24212055
Channelrhodopsins: a bioinformatics perspective.
Del Val C, Royuela-Flor J, Milenkovic S, Bondar AN., Biochim Biophys Acta 1837(5), 2014
PMID: 24252597
Philosophy of voltage-gated proton channels.
DeCoursey TE, Hosler J., J R Soc Interface 11(92), 2014
PMID: 24352668
Microbial and animal rhodopsins: structures, functions, and molecular mechanisms.
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H., Chem Rev 114(1), 2014
PMID: 24364740
Conversion of channelrhodopsin into a light-gated chloride channel.
Wietek J, Wiegert JS, Adeishvili N, Schneider F, Watanabe H, Tsunoda SP, Vogt A, Elstner M, Oertner TG, Hegemann P., Science 344(6182), 2014
PMID: 24674867
Role of a helix B lysine residue in the photoactive site in channelrhodopsins.
Li H, Govorunova EG, Sineshchekov OA, Spudich JL., Biophys J 106(8), 2014
PMID: 24739160
Resonance Raman and FTIR spectroscopic characterization of the closed and open states of channelrhodopsin-1.
Muders V, Kerruth S, Lórenz-Fonfría VA, Bamann C, Heberle J, Schlesinger R., FEBS Lett 588(14), 2014
PMID: 24859039
Retinal chromophore structure and Schiff base interactions in red-shifted channelrhodopsin-1 from Chlamydomonas augustae.
Ogren JI, Mamaev S, Russano D, Li H, Spudich JL, Rothschild KJ., Biochemistry 53(24), 2014
PMID: 24869998
Mycobacterium tuberculosis alters the metalloprotease activity of the COP9 signalosome.
Danelishvili L, Babrak L, Rose SJ, Everman J, Bermudez LE., MBio 5(4), 2014
PMID: 25139900
Light-induced movement of the transmembrane helix B in channelrhodopsin-2.
Sattig T, Rickert C, Bamberg E, Steinhoff HJ, Bamann C., Angew Chem Int Ed Engl 52(37), 2013
PMID: 23893661
Structural differences between the closed and open states of channelrhodopsin-2 as observed by EPR spectroscopy.
Krause N, Engelhard C, Heberle J, Schlesinger R, Bittl R., FEBS Lett 587(20), 2013
PMID: 24036447

52 References

Daten bereitgestellt von Europe PubMed Central.

Channelrhodopsin-2, a directly light-gated cation-selective membrane channel.
Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E., Proc. Natl. Acad. Sci. U.S.A. 100(24), 2003
PMID: 14615590
Channelrhodopsin-1: a light-gated proton channel in green algae.
Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P., Science 296(5577), 2002
PMID: 12089443
The microbial opsin family of optogenetic tools.
Zhang F, Vierock J, Yizhar O, Fenno LE, Tsunoda S, Kianianmomeni A, Prigge M, Berndt A, Cushman J, Polle J, Magnuson J, Hegemann P, Deisseroth K., Cell 147(7), 2011
PMID: 22196724
The multitalented microbial sensory rhodopsins.
Spudich JL., Trends Microbiol. 14(11), 2006
PMID: 17005405
Projection structure of channelrhodopsin-2 at 6 A resolution by electron crystallography.
Muller M, Bamann C, Bamberg E, Kuhlbrandt W., J. Mol. Biol. 414(1), 2011
PMID: 22001017
Crystal structure of the channelrhodopsin light-gated cation channel.
Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T, Hirata K, Ito J, Aita Y, Tsukazaki T, Hayashi S, Hegemann P, Maturana AD, Ishitani R, Deisseroth K, Nureki O., Nature 482(7385), 2012
PMID: 22266941
Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond.
Bamann C, Gueta R, Kleinlogel S, Nagel G, Bamberg E., Biochemistry 49(2), 2010
PMID: 20000562
The DC gate in Channelrhodopsin-2: crucial hydrogen bonding interaction between C128 and D156.
Nack M, Radu I, Gossing M, Bamann C, Bamberg E, von Mollard GF, Heberle J., Photochem. Photobiol. Sci. 9(2), 2010
PMID: 20126794
Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function.
Bamann C, Kirsch T, Nagel G, Bamberg E., J. Mol. Biol. 375(3), 2007
PMID: 18037436
Evolution of the channelrhodopsin photocycle model.
Stehfest K, Hegemann P., Chemphyschem 11(6), 2010
PMID: 20349494
The photocycle of channelrhodopsin-2: Ultrafast reaction dynamics and subsequent reaction steps
Verhoefen MK., 2010
Channelrhodopsin-2 is a leaky proton pump.
Feldbauer K, Zimmermann D, Pintschovius V, Spitz J, Bamann C, Bamberg E., Proc. Natl. Acad. Sci. U.S.A. 106(30), 2009
PMID: 19590013
Conformational changes of channelrhodopsin-2.
Radu I, Bamann C, Nack M, Nagel G, Bamberg E, Heberle J., J. Am. Chem. Soc. 131(21), 2009
PMID: 19422231
Monitoring light-induced structural changes of Channelrhodopsin-2 by UV-visible and Fourier transform infrared spectroscopy.
Ritter E, Stehfest K, Berndt A, Hegemann P, Bartl FJ., J. Biol. Chem. 283(50), 2008
PMID: 18927082
Proton transfer reactions across bacteriorhodopsin and along the membrane.
Heberle J., Biochim. Biophys. Acta 1458(1), 2000
PMID: 10812029
Inter-helical hydrogen bonds are essential elements for intra-protein signal transduction: the role of Asp115 in bacteriorhodopsin transport function.
Peralvarez-Marin A, Lorenz-Fonfria VA, Bourdelande JL, Querol E, Kandori H, Padros E., J. Mol. Biol. 368(3), 2007
PMID: 17367807
Determination of retinal chromophore structure in bacteriorhodopsin with resonance Raman spectroscopy.
Smith SO, Lugtenburg J, Mathies RA., J. Membr. Biol. 85(2), 1985
PMID: 4009698
The retinal structure of channelrhodopsin-2 assessed by resonance Raman spectroscopy.
Nack M, Radu I, Bamann C, Bamberg E, Heberle J., FEBS Lett. 583(22), 2009
PMID: 19854176
Resonance Raman studies of the purple membrane.
Aton B, Doukas AG, Callender RH, Becher B, Ebrey TG., Biochemistry 16(13), 1977
PMID: 880292
Two bathointermediates of the bacteriorhodopsin photocycle, distinguished by nanosecond time-resolved FTIR spectroscopy at room temperature
Dioumaev AK, Braiman MS., 1997
Proteorhodopsin is a light-driven proton pump with variable vectoriality.
Friedrich T, Geibel S, Kalmbach R, Chizhov I, Ataka K, Heberle J, Engelhard M, Bamberg E., J. Mol. Biol. 321(5), 2002
PMID: 12206764
In channelrhodopsin-2 Glu-90 is crucial for ion selectivity and is deprotonated during the photocycle.
Eisenhauer K, Kuhne J, Ritter E, Berndt A, Wolf S, Freier E, Bartl F, Hegemann P, Gerwert K., J. Biol. Chem. 287(9), 2012
PMID: 22219197
Conformational changes of bacteriorhodopsin detected by Fourier transform infrared difference spectroscopy.
Rothschild KJ, Zagaeski M, Cantore WA., Biochem. Biophys. Res. Commun. 103(2), 1981
PMID: 7332553
Fourier self-deconvolution: A method for resolving intrinsically overlapped bands
Kauppinen JK, Moffatt DJ, Mantsch HH, Cameron DG., 1981
The infrared absorption of amino acid side chains.
Barth A., Prog. Biophys. Mol. Biol. 74(3-5), 2000
PMID: 11226511
Conversion of bacteriorhodopsin into a chloride ion pump.
Sasaki J, Brown LS, Chon YS, Kandori H, Maeda A, Needleman R, Lanyi JK., Science 269(5220), 1995
PMID: 7604281
Ultrafast optogenetic control.
Gunaydin LA, Yizhar O, Berndt A, Sohal VS, Deisseroth K, Hegemann P., Nat. Neurosci. 13(3), 2010
PMID: 20081849
The hydration of amides in helices; a comprehensive picture from molecular dynamics, IR, and NMR.
Walsh ST, Cheng RP, Wright WW, Alonso DO, Daggett V, Vanderkooi JM, DeGrado WF., Protein Sci. 12(3), 2003
PMID: 12592022
The solvent-dependent shift of the amide I band of a fully solvated peptide as a local probe for the solvent composition in the peptide/solvent interface.
Paschek D, Puhse M, Perez-Goicochea A, Gnanakaran S, Garcia AE, Winter R, Geiger A., Chemphyschem 9(18), 2008
PMID: 19035605
Structural and functional implications of the instability of the ADP/ATP transporter purified from mitochondria as revealed by FTIR spectroscopy.
Lorenz-Fonfria VA, Villaverde J, Trezeguet V, Lauquin GJ, Brandolin G, Padros E., Biophys. J. 85(1), 2003
PMID: 12829481
Structural model of channelrhodopsin.
Watanabe HC, Welke K, Schneider F, Tsunoda S, Zhang F, Deisseroth K, Hegemann P, Elstner M., J. Biol. Chem. 287(10), 2012
PMID: 22241469
Very fast empirical prediction and rationalization of protein pKa values.
Li H, Robertson AD, Jensen JH., Proteins 61(4), 2005
PMID: 16231289
Decoupling of photo- and proton cycle in the Asp85-->Glu mutant of bacteriorhodopsin.
Heberle J, Oesterhelt D, Dencher NA., EMBO J. 12(10), 1993
PMID: 8404843
Aspartic acid-96 is the internal proton donor in the reprotonation of the Schiff base of bacteriorhodopsin.
Otto H, Marti T, Holz M, Mogi T, Lindau M, Khorana HG, Heyn MP., Proc. Natl. Acad. Sci. U.S.A. 86(23), 1989
PMID: 2556706
Thr-90 plays a vital role in the structure and function of bacteriorhodopsin.
Peralvarez-Marin A, Marquez M, Bourdelande JL, Querol E, Padros E., J. Biol. Chem. 279(16), 2004
PMID: 14757760
Structure of bacteriorhodopsin at 1.55 A resolution.
Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK., J. Mol. Biol. 291(4), 1999
PMID: 10452895
Kinetics of proton release and uptake by channelrhodopsin-2.
Nack M, Radu I, Schultz BJ, Resler T, Schlesinger R, Bondar AN, del Val C, Abbruzzetti S, Viappiani C, Bamann C, Bamberg E, Heberle J., FEBS Lett. 586(9), 2012
PMID: 22504075
How does voltage open an ion channel?
Tombola F, Pathak MM, Isacoff EY., Annu. Rev. Cell Dev. Biol. 22(), 2006
PMID: 16704338
Functional role of the "ionic lock"--an interhelical hydrogen-bond network in family A heptahelical receptors.
Vogel R, Mahalingam M, Ludeke S, Huber T, Siebert F, Sakmar TP., J. Mol. Biol. 380(4), 2008
PMID: 18554610
Photocurrent attenuation by a single polar-to-nonpolar point mutation of channelrhodopsin-2.
Sugiyama Y, Wang H, Hikima T, Sato M, Kuroda J, Takahashi T, Ishizuka T, Yawo H., Photochem. Photobiol. Sci. 8(3), 2009
PMID: 19255673
The branched photocycle of the slow-cycling channelrhodopsin-2 mutant C128T.
Stehfest K, Ritter E, Berndt A, Bartl F, Hegemann P., J. Mol. Biol. 398(5), 2010
PMID: 20346954


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 23509282
PubMed | Europe PMC

Suchen in

Google Scholar