Monitoring of Single-Cell Responses in the Optic Tectum of Adult Zebrafish with Dextran-Coupled Calcium Dyes Delivered via Local Electroporation

Kassing V, Engelmann J, Kurtz R (2013)
PLoS ONE 8(5): e62846.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
The zebrafish (Danio rerio) has become one of the major animal models for in vivo examination of sensory and neuronal computation. Similar to Xenopus tadpoles neural activity in the optic tectum, the major region controlling visually guided behavior, can be examined in zebrafish larvae by optical imaging. Prerequisites of these approaches are usually the transparency of larvae up to a certain age and the use of two-photon microscopy. This principle of fluorescence excitation was necessary to suppress crosstalk between signals from individual neurons, which is a critical issue when using membrane-permeant dyes. This makes the equipment to study neuronal processing costly and limits the approach to the study of larvae. Thus there is lack of knowledge about the properties of neurons in the optic tectum of adult animals. We established a procedure to circumvent these problems, enabling in vivo calcium imaging in the optic tectum of adult zebrafish. Following local application of dextran-coupled dyes single-neuron activity of adult zebrafish can be monitored with conventional widefield microscopy, because dye labeling remains restricted to tens of neurons or less. Among the neurons characterized with our technique we found neurons that were selective for a certain pattern orientation as well as neurons that responded in a direction-selective way to visual motion. These findings are consistent with previous studies and indicate that the functional integrity of neuronal circuits in the optic tectum of adult zebrafish is preserved with our staining technique. Overall, our protocol for in vivo calcium imaging provides a useful approach to monitor visual responses of individual neurons in the optic tectum of adult zebrafish even when only widefield microscopy is available. This approach will help to obtain valuable insight into the principles of visual computation in adult vertebrates and thus complement previous work on developing visual circuits.
Erscheinungsjahr
2013
Zeitschriftentitel
PLoS ONE
Band
8
Ausgabe
5
Art.-Nr.
e62846
ISSN
1932-6203
eISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2584410

Zitieren

Kassing V, Engelmann J, Kurtz R. Monitoring of Single-Cell Responses in the Optic Tectum of Adult Zebrafish with Dextran-Coupled Calcium Dyes Delivered via Local Electroporation. PLoS ONE. 2013;8(5): e62846.
Kassing, V., Engelmann, J., & Kurtz, R. (2013). Monitoring of Single-Cell Responses in the Optic Tectum of Adult Zebrafish with Dextran-Coupled Calcium Dyes Delivered via Local Electroporation. PLoS ONE, 8(5), e62846. doi:10.1371/journal.pone.0062846
Kassing, Vanessa, Engelmann, Jacob, and Kurtz, Rafael. 2013. “Monitoring of Single-Cell Responses in the Optic Tectum of Adult Zebrafish with Dextran-Coupled Calcium Dyes Delivered via Local Electroporation”. PLoS ONE 8 (5): e62846.
Kassing, V., Engelmann, J., and Kurtz, R. (2013). Monitoring of Single-Cell Responses in the Optic Tectum of Adult Zebrafish with Dextran-Coupled Calcium Dyes Delivered via Local Electroporation. PLoS ONE 8:e62846.
Kassing, V., Engelmann, J., & Kurtz, R., 2013. Monitoring of Single-Cell Responses in the Optic Tectum of Adult Zebrafish with Dextran-Coupled Calcium Dyes Delivered via Local Electroporation. PLoS ONE, 8(5): e62846.
V. Kassing, J. Engelmann, and R. Kurtz, “Monitoring of Single-Cell Responses in the Optic Tectum of Adult Zebrafish with Dextran-Coupled Calcium Dyes Delivered via Local Electroporation”, PLoS ONE, vol. 8, 2013, : e62846.
Kassing, V., Engelmann, J., Kurtz, R.: Monitoring of Single-Cell Responses in the Optic Tectum of Adult Zebrafish with Dextran-Coupled Calcium Dyes Delivered via Local Electroporation. PLoS ONE. 8, : e62846 (2013).
Kassing, Vanessa, Engelmann, Jacob, and Kurtz, Rafael. “Monitoring of Single-Cell Responses in the Optic Tectum of Adult Zebrafish with Dextran-Coupled Calcium Dyes Delivered via Local Electroporation”. PLoS ONE 8.5 (2013): e62846.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:13Z
MD5 Prüfsumme
00fa47bdd7536b71ff2ab82e1738e975


3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Imaging Neuronal Activity in the Optic Tectum of Late Stage Larval Zebrafish.
Bergmann K, Meza Santoscoy P, Lygdas K, Nikolaeva Y, MacDonald RB, Cunliffe VT, Nikolaev A., J Dev Biol 6(1), 2018
PMID: 29615555
Adaptation-induced modification of motion selectivity tuning in visual tectal neurons of adult zebrafish.
Hollmann V, Lucks V, Kurtz R, Engelmann J., J Neurophysiol 114(5), 2015
PMID: 26378206

55 References

Daten bereitgestellt von Europe PubMed Central.

Circuit neuroscience in zebrafish.
Friedrich RW, Jacobson GA, Zhu P., Curr. Biol. 20(8), 2010
PMID: 21749961
Application of zebrafish oculomotor behavior to model human disorders.
Maurer CM, Huang YY, Neuhauss SC., Rev Neurosci 22(1), 2011
PMID: 21615257
Investigating the genetics of visual processing, function and behaviour in zebrafish.
Renninger SL, Schonthaler HB, Neuhauss SC, Dahm R., Neurogenetics 12(2), 2011
PMID: 21267617
Focusing on optic tectum circuitry through the lens of genetics.
Nevin LM, Robles E, Baier H, Scott EK., BMC Biol. 8(), 2010
PMID: 20920150
Filtering of visual information in the tectum by an identified neural circuit.
Del Bene F, Wyart C, Robles E, Tran A, Looger L, Scott EK, Isacoff EY, Baier H., Science 330(6004), 2010
PMID: 21030657
Emergence of binocular functional properties in a monocular neural circuit.
Ramdya P, Engert F., Nat. Neurosci. 11(9), 2008
PMID: 19160507
Characterization of genetically targeted neuron types in the zebrafish optic tectum.
Robles E, Smith SJ, Baier H., Front Neural Circuits 5(), 2011
PMID: 21390291
Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval.
Sumbre G, Muto A, Baier H, Poo MM., Nature 456(7218), 2008
PMID: 18923391
Zebrafish pigmentation mutations and the processes of neural crest development.
Kelsh RN, Brand M, Jiang YJ, Heisenberg CP, Lin S, Haffter P, Odenthal J, Mullins MC, van Eeden FJ, Furutani-Seiki M, Granato M, Hammerschmidt M, Kane DA, Warga RM, Beuchle D, Vogelsang L, Nusslein-Volhard C., Development 123(), 1996
PMID: 9007256
nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate.
Lister JA, Robertson CP, Lepage T, Johnson SL, Raible DW., Development 126(17), 1999
PMID: 10433906
Investigations on the colour pattern of the zebrafish Brachydanio rerio (Cyprinidae, Teleostei)
AUTHOR UNKNOWN, 1975
Phenylthiourea specifically reduces zebrafish eye size.
Li Z, Ptak D, Zhang L, Walls EK, Zhong W, Leung YF., PLoS ONE 7(6), 2012
PMID: 22761952
Optical monitoring of brain function in vivo: from neurons to networks.
Garaschuk O, Milos RI, Grienberger C, Marandi N, Adelsberger H, Konnerth A., Pflugers Arch. 453(3), 2006
PMID: 17047983
In vivo two-photon calcium imaging of neuronal networks.
Stosiek C, Garaschuk O, Holthoff K, Konnerth A., Proc. Natl. Acad. Sci. U.S.A. 100(12), 2003
PMID: 12777621
Two-photon laser scanning fluorescence microscopy.
Denk W, Strickler JH, Webb WW., Science 248(4951), 1990
PMID: 2321027

AUTHOR UNKNOWN, 0
Ca2+ imaging of identifiable neurons labeled by electroporation in insect brains.
Fujiwara T, Kazawa T, Haupt SS, Kanzaki R., Neuroreport 20(12), 2009
PMID: 19550361
Single-cell electroporation for gene transfer in vivo.
Haas K, Sin WC, Javaherian A, Li Z, Cline HT., Neuron 29(3), 2001
PMID: 11301019

AUTHOR UNKNOWN, 0
Vision egg: an open-source library for realtime visual stimulus generation
AUTHOR UNKNOWN, 2008

AUTHOR UNKNOWN, 0
Neuronal representation of visual motion and orientation in the fly medulla.
Spalthoff C, Gerdes R, Kurtz R., Front Neural Circuits 6(), 2012
PMID: 23087615
Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain.
Hama H, Kurokawa H, Kawano H, Ando R, Shimogori T, Noda H, Fukami K, Sakaue-Sawano A, Miyawaki A., Nat. Neurosci. 14(11), 2011
PMID: 21878933

AUTHOR UNKNOWN, 0
Visual response properties of zebrafish tectal cells.
Sajovic P, Levinthal C., Neuroscience 7(10), 1982
PMID: 7177382
Visual cells of zebrafish optic tectum: mapping with small spots.
Sajovic P, Levinthal C., Neuroscience 7(10), 1982
PMID: 7177381
Directionally selective visual units recorded in optic tectum of the goldfish.
Wartzok D, Marks WB., J. Neurophysiol. 36(4), 1973
PMID: 4713309
Electrophysiology of neural units in goldfish optic tectum.
O'Benar JD., Brain Res. Bull. 1(6), 1976
PMID: 1021210
Center-surround organisation and interactions in receptive fields of goldfish tectal units.
Schellart NA, Riemslag FC, Sperkreijse H., Vision Res. 19(4), 1979
PMID: 473615
Current concepts in neuroanatomical tracing.
Kobbert C, Apps R, Bechmann I, Lanciego JL, Mey J, Thanos S., Prog. Neurobiol. 62(4), 2000
PMID: 10856608
Calcium indicator loading of neurons using single-cell electroporation.
Nevian T, Helmchen F., Pflugers Arch. 454(4), 2007
PMID: 17334778
Direction selectivity in the goldfish tectum revisited.
Maximov V, Maximova E, Maximov P., Ann. N. Y. Acad. Sci. 1048(), 2005
PMID: 16154933
Directionally selective visual units recorded in optic tectum of the goldfish.
Wartzok D, Marks WB., J. Neurophysiol. 36(4), 1973
PMID: 4713309
Parametric functional maps of visual inputs to the tectum.
Nikolaou N, Lowe AS, Walker AS, Abbas F, Hunter PR, Thompson ID, Meyer MP., Neuron 76(2), 2012
PMID: 23083735
Layer-specific targeting of direction-selective neurons in the zebrafish optic tectum.
Gabriel JP, Trivedi CA, Maurer CM, Ryu S, Bollmann JH., Neuron 76(6), 2012
PMID: 23259950
Functional imaging in the zebrafish retinotectal system using RGECO.
Walker AS, Burrone J, Meyer MP., Front Neural Circuits 7(), 2013
PMID: 23508811
Dendritic organization of sensory input to cortical neurons in vivo.
Jia H, Rochefort NL, Chen X, Konnerth A., Nature 464(7293), 2010
PMID: 20428163
Localized direction selective responses in the dendrites of visual interneurons of the fly.
Spalthoff C, Egelhaaf M, Tinnefeld P, Kurtz R., BMC Biol. 8(), 2010
PMID: 20384983
Directionally selective calcium signals in dendrites of starburst amacrine cells.
Euler T, Detwiler PB, Denk W., Nature 418(6900), 2002
PMID: 12192402
A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells.
Hausselt SE, Euler T, Detwiler PB, Denk W., PLoS Biol. 5(7), 2007
PMID: 17622194
Cerebellum-like structures and their implications for cerebellar function.
Bell CC, Han V, Sawtell NB., Annu. Rev. Neurosci. 31(), 2008
PMID: 18275284
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23667529
PubMed | Europe PMC

Suchen in

Google Scholar