A laser-supported lowerable surface setup to study the role of ground contact during stepping
Berendes V, Dübbert M, Bockemühl T, Schmitz J, Büschges A, Gruhn M (2013)
Journal of neuroscience methods 215(2): 224-233.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Berendes, Volker;
Dübbert, Michael;
Bockemühl, TillUniBi;
Schmitz, Joscha;
Büschges, Ansgar;
Gruhn, Matthias
Einrichtung
Abstract / Bemerkung
We introduce a laser-supported setup to study the influence of afferent input on muscle activation during walking, using a movable ground platform. This approach allows investigating if and how the activity of stance phase muscles of an insect (e.g. stick insect) responds to a missing ground contact signal. The walking surface consists of a fixed and a lowerable part, which can be lowered to defined levels below the previous ground level at any time point during a walking sequence. As a consequence, the leg under investigation finds either a lower ground level or no ground support at all. The lowerable walking surface consists of a 49mm×34mm stainless steel surface, made slippery and equipped for tarsal contact monitoring, similar to the system that was described by Gruhn and colleagues (Gruhn et al., 2006). The setup controller allows pneumatic lowering of the surface and subsequent detection of tarsal entry into the previous ground level with the help of a thin sheet of laser light and a corresponding detector. Here, we describe basic properties of the new setup and show the results of first experiments to demonstrate its use for the study of sensory and central influences in stepping of a small animal. In the experiments, we compare the effect of ground-support ("control") with either steps into the hole (SiH), ground support at a lower surface level, or the amputation of the tarsus on the onset of EMG activity in the flexor tibiae muscle of the stick insect.
Erscheinungsjahr
2013
Zeitschriftentitel
Journal of neuroscience methods
Band
215
Ausgabe
2
Seite(n)
224-233
ISSN
0165-0270
Page URI
https://pub.uni-bielefeld.de/record/2584402
Zitieren
Berendes V, Dübbert M, Bockemühl T, Schmitz J, Büschges A, Gruhn M. A laser-supported lowerable surface setup to study the role of ground contact during stepping. Journal of neuroscience methods. 2013;215(2):224-233.
Berendes, V., Dübbert, M., Bockemühl, T., Schmitz, J., Büschges, A., & Gruhn, M. (2013). A laser-supported lowerable surface setup to study the role of ground contact during stepping. Journal of neuroscience methods, 215(2), 224-233. doi:10.1016/j.jneumeth.2013.03.024
Berendes, Volker, Dübbert, Michael, Bockemühl, Till, Schmitz, Joscha, Büschges, Ansgar, and Gruhn, Matthias. 2013. “A laser-supported lowerable surface setup to study the role of ground contact during stepping”. Journal of neuroscience methods 215 (2): 224-233.
Berendes, V., Dübbert, M., Bockemühl, T., Schmitz, J., Büschges, A., and Gruhn, M. (2013). A laser-supported lowerable surface setup to study the role of ground contact during stepping. Journal of neuroscience methods 215, 224-233.
Berendes, V., et al., 2013. A laser-supported lowerable surface setup to study the role of ground contact during stepping. Journal of neuroscience methods, 215(2), p 224-233.
V. Berendes, et al., “A laser-supported lowerable surface setup to study the role of ground contact during stepping”, Journal of neuroscience methods, vol. 215, 2013, pp. 224-233.
Berendes, V., Dübbert, M., Bockemühl, T., Schmitz, J., Büschges, A., Gruhn, M.: A laser-supported lowerable surface setup to study the role of ground contact during stepping. Journal of neuroscience methods. 215, 224-233 (2013).
Berendes, Volker, Dübbert, Michael, Bockemühl, Till, Schmitz, Joscha, Büschges, Ansgar, and Gruhn, Matthias. “A laser-supported lowerable surface setup to study the role of ground contact during stepping”. Journal of neuroscience methods 215.2 (2013): 224-233.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
1 Zitation in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
The role of leg touchdown for the control of locomotor activity in the walking stick insect.
Schmitz J, Gruhn M, Büschges A., J Neurophysiol 113(7), 2015
PMID: 25652931
Schmitz J, Gruhn M, Büschges A., J Neurophysiol 113(7), 2015
PMID: 25652931
48 References
Daten bereitgestellt von Europe PubMed Central.
The role of sensory signals from the insect coxa-trochanteral joint in controlling motor activity of the femur-tibia joint.
Akay T, Bassler U, Gerharz P, Buschges A., J. Neurophysiol. 85(2), 2001
PMID: 11160496
Akay T, Bassler U, Gerharz P, Buschges A., J. Neurophysiol. 85(2), 2001
PMID: 11160496
Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg.
Akay T, Haehn S, Schmitz J, Buschges A., J. Neurophysiol. 92(1), 2004
PMID: 14999042
Akay T, Haehn S, Schmitz J, Buschges A., J. Neurophysiol. 92(1), 2004
PMID: 14999042
[On the regulation of the position of the femur-tibial joint of the walking-stick insect Carausius morosus at rest and in motion]
Bassler U., Kybernetik 4(1), 1967
PMID: 5600297
Bassler U., Kybernetik 4(1), 1967
PMID: 5600297
Sense organs in the femur of the stick insect and their relevance to the control of position of the femur–tibia joint
Bässler, J Comp Physiol 121(), 1977
Bässler, J Comp Physiol 121(), 1977
The femur-tibia control system of stick insects--a model system for the study of the neural basis of joint control.
Bassler U., Brain Res. Brain Res. Rev. 18(2), 1993
PMID: 8339107
Bassler U., Brain Res. Brain Res. Rev. 18(2), 1993
PMID: 8339107
The walking- (and searching-) pattern generator of stick insects, a modular system composed of reflex chains and endogenous oscillators
Bässler, Biol Cybern 69(), 1993
Bässler, Biol Cybern 69(), 1993
Interruption of searching movements of partly retrained front legs of stick insects, a model situation for the start of stance phase?
Bässler, Biol Cybern 65(), 1991
Bässler, Biol Cybern 65(), 1991
Unsteady locomotion: integrating muscle function with whole body dynamics and neuromuscular control.
Biewener AA, Daley MA., J. Exp. Biol. 210(Pt 17), 2007
PMID: 17704070
Biewener AA, Daley MA., J. Exp. Biol. 210(Pt 17), 2007
PMID: 17704070
The intrinsic factor in the progression of the mammalian
Brown, Proc R Soc Lond B 44(), 1911
Brown, Proc R Soc Lond B 44(), 1911
Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine
BÜSchges A, Schmitz J, BÄSsler U., J. Exp. Biol. 198(Pt 2), 1995
PMID: 9318078
BÜSchges A, Schmitz J, BÄSsler U., J. Exp. Biol. 198(Pt 2), 1995
PMID: 9318078
Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion.
Buschges A., J. Neurophysiol. 93(3), 2005
PMID: 15738270
Buschges A., J. Neurophysiol. 93(3), 2005
PMID: 15738270
Mechanosensory feedback in walking: from joint control to locomotor patterns
Büschges, Adv Insect Physiol 34(), 2008
Büschges, Adv Insect Physiol 34(), 2008
The contributions of diverse sense organs to the control of leg movement by a walking stick insect
Cruse, J Comp Physiol A 154(), 1984
Cruse, J Comp Physiol A 154(), 1984
Which parameters control the leg movement of a walking insect? I. Velocity control during the stance phase
Cruse, J Exp Biol 116(), 1985
Cruse, J Exp Biol 116(), 1985
Which parameters control the leg movement of a walking leg? II. The start of swing phase
Cruse, J Exp Biol 116(), 1985
Cruse, J Exp Biol 116(), 1985
What mechanisms coordinate leg movement in walking arthropods?
Cruse H., Trends Neurosci. 13(1), 1990
PMID: 1688670
Cruse H., Trends Neurosci. 13(1), 1990
PMID: 1688670
Running over rough terrain: guinea fowl maintain dynamic stability despite a large unexpected change in substrate height.
Daley MA, Usherwood JR, Felix G, Biewener AA., J. Exp. Biol. 209(Pt 1), 2006
PMID: 16354788
Daley MA, Usherwood JR, Felix G, Biewener AA., J. Exp. Biol. 209(Pt 1), 2006
PMID: 16354788
Motoneurons of the Flexor tibiae muscle in Phasmids
Debrodt, Zool JB Physiol 93(), 1989
Debrodt, Zool JB Physiol 93(), 1989
Dynamic simulation of insect walking.
Ekeberg O, Blumel M, Buschges A., Arthropod Struct Dev 33(3), 2004
PMID: 18089040
Ekeberg O, Blumel M, Buschges A., Arthropod Struct Dev 33(3), 2004
PMID: 18089040
Leg movements of stick insects walking with five legs on a treadwheel and with one leg on a motor-driven belt. II. Leg coordination when step-frequencies differ from leg to leg.
Foth E, Bassler U., Biol Cybern 51(5), 1985
PMID: 3978147
Foth E, Bassler U., Biol Cybern 51(5), 1985
PMID: 3978147
Control of flexor motoneuron activity during single leg walking of the stick insect on an electronically controlled treadwheel.
Gabriel JP, Scharstein H, Schmidt J, Buschges A., J. Neurobiol. 56(3), 2003
PMID: 12884263
Gabriel JP, Scharstein H, Schmidt J, Buschges A., J. Neurobiol. 56(3), 2003
PMID: 12884263
Generation and control of stepping velocity in the single leg of a stick insect walking on a treadmill
Gabriel, Philos Trans R Soc B 365(), 2007
Gabriel, Philos Trans R Soc B 365(), 2007
Motoneurons, DUM cells, and sensory neurons in an insect thoracic ganglion: a tracing study in the stick insect Carausius morosus.
Goldammer J, Buschges A, Schmidt J., J. Comp. Neurol. 520(2), 2012
PMID: 21618233
Goldammer J, Buschges A, Schmidt J., J. Comp. Neurol. 520(2), 2012
PMID: 21618233
Corrective responses to loss of ground support during walking. I. Intact cats.
Gorassini MA, Prochazka A, Hiebert GW, Gauthier MJ., J. Neurophysiol. 71(2), 1994
PMID: 8176429
Gorassini MA, Prochazka A, Hiebert GW, Gauthier MJ., J. Neurophysiol. 71(2), 1994
PMID: 8176429
Coordinated walking in insects
Graham, Adv Insect Physiol 18(), 1985
Graham, Adv Insect Physiol 18(), 1985
Coordinated walking of stick insects on a mercury surface
Graham, J Exp Biol 92(), 1981
Graham, J Exp Biol 92(), 1981
Adaptive changes in locomotor control after partial denervation of triceps surae muscles in the cat.
Gritsenko V, Mushahwar V, Prochazka A., J. Physiol. (Lond.) 533(Pt 1), 2001
PMID: 11351036
Gritsenko V, Mushahwar V, Prochazka A., J. Physiol. (Lond.) 533(Pt 1), 2001
PMID: 11351036
Tethered stick insect walking: a modified slippery surface setup with optomotor stimulation and electrical monitoring of tarsal contact.
Gruhn M, Hoffmann O, Dubbert M, Scharstein H, Buschges A., J. Neurosci. Methods 158(2), 2006
PMID: 16824615
Gruhn M, Hoffmann O, Dubbert M, Scharstein H, Buschges A., J. Neurosci. Methods 158(2), 2006
PMID: 16824615
Straight walking and turning on a slippery surface.
Gruhn M, Zehl L, Buschges A., J. Exp. Biol. 212(Pt 2), 2009
PMID: 19112138
Gruhn M, Zehl L, Buschges A., J. Exp. Biol. 212(Pt 2), 2009
PMID: 19112138
AUTHOR UNKNOWN, 0
Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint.
Hess D, Buschges A., J. Neurophysiol. 81(4), 1999
PMID: 10200220
Hess D, Buschges A., J. Neurophysiol. 81(4), 1999
PMID: 10200220
Rapid mechano-sensory pathways code leg impact and elicit very rapid reflexes in insects.
Holtje M, Hustert R., J. Exp. Biol. 206(Pt 16), 2003
PMID: 12847116
Holtje M, Hustert R., J. Exp. Biol. 206(Pt 16), 2003
PMID: 12847116
AUTHOR UNKNOWN, 0
Distribution of central pattern generators for rhythmic motor outputs in the spinal cord of limbed vertebrates
Kiehn, Ann NY Acad Sci 860(), 1998
Kiehn, Ann NY Acad Sci 860(), 1998
Leg adjustments during running across visible and camouflaged incidental changes in ground level.
Muller R, Ernst M, Blickhan R., J. Exp. Biol. 215(Pt 17), 2012
PMID: 22875771
Muller R, Ernst M, Blickhan R., J. Exp. Biol. 215(Pt 17), 2012
PMID: 22875771
Role of sensory feedback in the control of stance duration in walking cats.
Pearson KG., Brain Res Rev 57(1), 2007
PMID: 17761295
Pearson KG., Brain Res Rev 57(1), 2007
PMID: 17761295
Intersegmental coordination of leech swimming: comparison of in situ and isolated nerve cord activity with body wall movement.
Pearce RA, Friesen WO., Brain Res. 299(2), 1984
PMID: 6733455
Pearce RA, Friesen WO., Brain Res. 299(2), 1984
PMID: 6733455
Three forms of the scratch reflex in the spinal turtle: central generation of motor patterns.
Robertson GA, Mortin LI, Keifer J, Stein PS., J. Neurophysiol. 53(6), 1985
PMID: 4009231
Robertson GA, Mortin LI, Keifer J, Stein PS., J. Neurophysiol. 53(6), 1985
PMID: 4009231
Activity patterns and timing of muscle activity in the forward walking and backward walking stick insect Carausius morosus.
Rosenbaum P, Wosnitza A, Buschges A, Gruhn M., J. Neurophysiol. 104(3), 2010
PMID: 20668273
Rosenbaum P, Wosnitza A, Buschges A, Gruhn M., J. Neurophysiol. 104(3), 2010
PMID: 20668273
Innervation pattern of a pool of nine excitatory motor neurons in the flexor tibiae muscle of a locust hind leg
Sasaki K, Burrows M., J. Exp. Biol. 201 (Pt 12)(), 1998
PMID: 9600870
Sasaki K, Burrows M., J. Exp. Biol. 201 (Pt 12)(), 1998
PMID: 9600870
Rhythmic activity in a motor axon induced by axotomy.
Schmidt J, Grund M., Neuroreport 14(9), 2003
PMID: 12824773
Schmidt J, Grund M., Neuroreport 14(9), 2003
PMID: 12824773
Properties of the feedback system controlling the coxa-trochanter-joint in the stick insect Carausius morosus
Schmitz, Biol Cybern 55(), 1986
Schmitz, Biol Cybern 55(), 1986
Load-compensating reactions in the proximal leg joints of stick insects during standing and walking
Schmitz, J Exp Biol 183(), 1993
Schmitz, J Exp Biol 183(), 1993
Intersegmental transfer of sensory signals in the stick insect leg muscle control system.
Stein W, Buschges A, Bassler U., J. Neurobiol. 66(11), 2006
PMID: 16902990
Stein W, Buschges A, Bassler U., J. Neurobiol. 66(11), 2006
PMID: 16902990
Patterns of spinal sensory-motor connectivity prescribed by a dorsoventral positional template.
Surmeli G, Akay T, Ippolito GC, Tucker PW, Jessell TM., Cell 147(3), 2011
PMID: 22036571
Surmeli G, Akay T, Ippolito GC, Tucker PW, Jessell TM., Cell 147(3), 2011
PMID: 22036571
Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen
Wendler, Z Vergl Physiol 48(), 1964
Wendler, Z Vergl Physiol 48(), 1964
Erzeugung und Kontrolle koordinierter Bewegungen bei Tieren—Beispiele an Insekten
Wendler, Kybernetik, München: Oldenbourg (), 1977
Wendler, Kybernetik, München: Oldenbourg (), 1977
Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus.
Zill SN, Buschges A, Schmitz J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 197(8), 2011
PMID: 21544617
Zill SN, Buschges A, Schmitz J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 197(8), 2011
PMID: 21544617
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 23562598
PubMed | Europe PMC
Suchen in