A laser-supported lowerable surface setup to study the role of ground contact during stepping

Berendes V, Dübbert M, Bockemühl T, Schmitz J, Büschges A, Gruhn M (2013)
Journal of neuroscience methods 215(2): 224-233.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Berendes, Volker; Dübbert, Michael; Bockemühl, TillUniBi; Schmitz, Joscha; Büschges, Ansgar; Gruhn, Matthias
Abstract / Bemerkung
We introduce a laser-supported setup to study the influence of afferent input on muscle activation during walking, using a movable ground platform. This approach allows investigating if and how the activity of stance phase muscles of an insect (e.g. stick insect) responds to a missing ground contact signal. The walking surface consists of a fixed and a lowerable part, which can be lowered to defined levels below the previous ground level at any time point during a walking sequence. As a consequence, the leg under investigation finds either a lower ground level or no ground support at all. The lowerable walking surface consists of a 49mm×34mm stainless steel surface, made slippery and equipped for tarsal contact monitoring, similar to the system that was described by Gruhn and colleagues (Gruhn et al., 2006). The setup controller allows pneumatic lowering of the surface and subsequent detection of tarsal entry into the previous ground level with the help of a thin sheet of laser light and a corresponding detector. Here, we describe basic properties of the new setup and show the results of first experiments to demonstrate its use for the study of sensory and central influences in stepping of a small animal. In the experiments, we compare the effect of ground-support ("control") with either steps into the hole (SiH), ground support at a lower surface level, or the amputation of the tarsus on the onset of EMG activity in the flexor tibiae muscle of the stick insect.
Erscheinungsjahr
2013
Zeitschriftentitel
Journal of neuroscience methods
Band
215
Ausgabe
2
Seite(n)
224-233
ISSN
0165-0270
Page URI
https://pub.uni-bielefeld.de/record/2584402

Zitieren

Berendes V, Dübbert M, Bockemühl T, Schmitz J, Büschges A, Gruhn M. A laser-supported lowerable surface setup to study the role of ground contact during stepping. Journal of neuroscience methods. 2013;215(2):224-233.
Berendes, V., Dübbert, M., Bockemühl, T., Schmitz, J., Büschges, A., & Gruhn, M. (2013). A laser-supported lowerable surface setup to study the role of ground contact during stepping. Journal of neuroscience methods, 215(2), 224-233. doi:10.1016/j.jneumeth.2013.03.024
Berendes, Volker, Dübbert, Michael, Bockemühl, Till, Schmitz, Joscha, Büschges, Ansgar, and Gruhn, Matthias. 2013. “A laser-supported lowerable surface setup to study the role of ground contact during stepping”. Journal of neuroscience methods 215 (2): 224-233.
Berendes, V., Dübbert, M., Bockemühl, T., Schmitz, J., Büschges, A., and Gruhn, M. (2013). A laser-supported lowerable surface setup to study the role of ground contact during stepping. Journal of neuroscience methods 215, 224-233.
Berendes, V., et al., 2013. A laser-supported lowerable surface setup to study the role of ground contact during stepping. Journal of neuroscience methods, 215(2), p 224-233.
V. Berendes, et al., “A laser-supported lowerable surface setup to study the role of ground contact during stepping”, Journal of neuroscience methods, vol. 215, 2013, pp. 224-233.
Berendes, V., Dübbert, M., Bockemühl, T., Schmitz, J., Büschges, A., Gruhn, M.: A laser-supported lowerable surface setup to study the role of ground contact during stepping. Journal of neuroscience methods. 215, 224-233 (2013).
Berendes, Volker, Dübbert, Michael, Bockemühl, Till, Schmitz, Joscha, Büschges, Ansgar, and Gruhn, Matthias. “A laser-supported lowerable surface setup to study the role of ground contact during stepping”. Journal of neuroscience methods 215.2 (2013): 224-233.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The role of leg touchdown for the control of locomotor activity in the walking stick insect.
Schmitz J, Gruhn M, Büschges A., J Neurophysiol 113(7), 2015
PMID: 25652931

48 References

Daten bereitgestellt von Europe PubMed Central.

Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg.
Akay T, Haehn S, Schmitz J, Buschges A., J. Neurophysiol. 92(1), 2004
PMID: 14999042
Sense organs in the femur of the stick insect and their relevance to the control of position of the femur–tibia joint
Bässler, J Comp Physiol 121(), 1977
The walking- (and searching-) pattern generator of stick insects, a modular system composed of reflex chains and endogenous oscillators
Bässler, Biol Cybern 69(), 1993
Interruption of searching movements of partly retrained front legs of stick insects, a model situation for the start of stance phase?
Bässler, Biol Cybern 65(), 1991
The intrinsic factor in the progression of the mammalian
Brown, Proc R Soc Lond B 44(), 1911
Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine
BÜSchges A, Schmitz J, BÄSsler U., J. Exp. Biol. 198(Pt 2), 1995
PMID: 9318078
Mechanosensory feedback in walking: from joint control to locomotor patterns
Büschges, Adv Insect Physiol 34(), 2008
The contributions of diverse sense organs to the control of leg movement by a walking stick insect
Cruse, J Comp Physiol A 154(), 1984
Which parameters control the leg movement of a walking insect? I. Velocity control during the stance phase
Cruse, J Exp Biol 116(), 1985
Which parameters control the leg movement of a walking leg? II. The start of swing phase
Cruse, J Exp Biol 116(), 1985
What mechanisms coordinate leg movement in walking arthropods?
Cruse H., Trends Neurosci. 13(1), 1990
PMID: 1688670
Running over rough terrain: guinea fowl maintain dynamic stability despite a large unexpected change in substrate height.
Daley MA, Usherwood JR, Felix G, Biewener AA., J. Exp. Biol. 209(Pt 1), 2006
PMID: 16354788
Motoneurons of the Flexor tibiae muscle in Phasmids
Debrodt, Zool JB Physiol 93(), 1989
Dynamic simulation of insect walking.
Ekeberg O, Blumel M, Buschges A., Arthropod Struct Dev 33(3), 2004
PMID: 18089040
Generation and control of stepping velocity in the single leg of a stick insect walking on a treadmill
Gabriel, Philos Trans R Soc B 365(), 2007
Corrective responses to loss of ground support during walking. I. Intact cats.
Gorassini MA, Prochazka A, Hiebert GW, Gauthier MJ., J. Neurophysiol. 71(2), 1994
PMID: 8176429
Coordinated walking in insects
Graham, Adv Insect Physiol 18(), 1985
Coordinated walking of stick insects on a mercury surface
Graham, J Exp Biol 92(), 1981
Adaptive changes in locomotor control after partial denervation of triceps surae muscles in the cat.
Gritsenko V, Mushahwar V, Prochazka A., J. Physiol. (Lond.) 533(Pt 1), 2001
PMID: 11351036
Tethered stick insect walking: a modified slippery surface setup with optomotor stimulation and electrical monitoring of tarsal contact.
Gruhn M, Hoffmann O, Dubbert M, Scharstein H, Buschges A., J. Neurosci. Methods 158(2), 2006
PMID: 16824615
Straight walking and turning on a slippery surface.
Gruhn M, Zehl L, Buschges A., J. Exp. Biol. 212(Pt 2), 2009
PMID: 19112138

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Distribution of central pattern generators for rhythmic motor outputs in the spinal cord of limbed vertebrates
Kiehn, Ann NY Acad Sci 860(), 1998
Leg adjustments during running across visible and camouflaged incidental changes in ground level.
Muller R, Ernst M, Blickhan R., J. Exp. Biol. 215(Pt 17), 2012
PMID: 22875771
Three forms of the scratch reflex in the spinal turtle: central generation of motor patterns.
Robertson GA, Mortin LI, Keifer J, Stein PS., J. Neurophysiol. 53(6), 1985
PMID: 4009231
Rhythmic activity in a motor axon induced by axotomy.
Schmidt J, Grund M., Neuroreport 14(9), 2003
PMID: 12824773
Properties of the feedback system controlling the coxa-trochanter-joint in the stick insect Carausius morosus
Schmitz, Biol Cybern 55(), 1986
Load-compensating reactions in the proximal leg joints of stick insects during standing and walking
Schmitz, J Exp Biol 183(), 1993
Intersegmental transfer of sensory signals in the stick insect leg muscle control system.
Stein W, Buschges A, Bassler U., J. Neurobiol. 66(11), 2006
PMID: 16902990
Patterns of spinal sensory-motor connectivity prescribed by a dorsoventral positional template.
Surmeli G, Akay T, Ippolito GC, Tucker PW, Jessell TM., Cell 147(3), 2011
PMID: 22036571
Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen
Wendler, Z Vergl Physiol 48(), 1964
Erzeugung und Kontrolle koordinierter Bewegungen bei Tieren—Beispiele an Insekten
Wendler, Kybernetik, München: Oldenbourg (), 1977
Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus.
Zill SN, Buschges A, Schmitz J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 197(8), 2011
PMID: 21544617
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23562598
PubMed | Europe PMC

Suchen in

Google Scholar