Plant Core Environmental Stress Response Genes Are Systemically Coordinated during Abiotic Stresses

Hahn A, Kilian J, Mohrholz A, Ladwig F, Peschke F, Dautel R, Harter K, Berendzen KW, Wanke D (2013)
International journal of molecular sciences 14(4): 7617-7641.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Hahn, Achim; Kilian, Joachim; Mohrholz, Anne; Ladwig, Friederike; Peschke, FlorianUniBi; Dautel, Rebecca; Harter, Klaus; Berendzen, Kenneth W; Wanke, Dierk
Abstract / Bemerkung
Studying plant stress responses is an important issue in a world threatened by global warming. Unfortunately, comparative analyses are hampered by varying experimental setups. In contrast, the AtGenExpress abiotic stress experiment displays intercomparability. Importantly, six of the nine stresses (wounding, genotoxic, oxidative, UV-B light, osmotic and salt) can be examined for their capacity to generate systemic signals between the shoot and root, which might be essential to regain homeostasis in Arabidopsis thaliana. We classified the systemic responses into two groups: genes that are regulated in the non-treated tissue only are defined as type I responsive and, accordingly, genes that react in both tissues are termed type II responsive. Analysis of type I and II systemic responses suggest distinct functionalities, but also significant overlap between different stresses. Comparison with salicylic acid (SA) and methyl-jasmonate (MeJA) responsive genes implies that MeJA is involved in the systemic stress response. Certain genes are predominantly responding in only one of the categories, e.g., WRKY genes respond mainly non-systemically. Instead, genes of the plant core environmental stress response (PCESR), e.g., ZAT10, ZAT12, ERD9 or MES9, are part of different response types. Moreover, several PCESR genes switch between the categories in a stress-specific manner.
Erscheinungsjahr
2013
Zeitschriftentitel
International journal of molecular sciences
Band
14
Ausgabe
4
Seite(n)
7617-7641
ISSN
1422-0067
eISSN
1422-0067
Page URI
https://pub.uni-bielefeld.de/record/2579162

Zitieren

Hahn A, Kilian J, Mohrholz A, et al. Plant Core Environmental Stress Response Genes Are Systemically Coordinated during Abiotic Stresses. International journal of molecular sciences. 2013;14(4):7617-7641.
Hahn, A., Kilian, J., Mohrholz, A., Ladwig, F., Peschke, F., Dautel, R., Harter, K., et al. (2013). Plant Core Environmental Stress Response Genes Are Systemically Coordinated during Abiotic Stresses. International journal of molecular sciences, 14(4), 7617-7641. doi:10.3390/ijms14047617
Hahn, Achim, Kilian, Joachim, Mohrholz, Anne, Ladwig, Friederike, Peschke, Florian, Dautel, Rebecca, Harter, Klaus, Berendzen, Kenneth W, and Wanke, Dierk. 2013. “Plant Core Environmental Stress Response Genes Are Systemically Coordinated during Abiotic Stresses”. International journal of molecular sciences 14 (4): 7617-7641.
Hahn, A., Kilian, J., Mohrholz, A., Ladwig, F., Peschke, F., Dautel, R., Harter, K., Berendzen, K. W., and Wanke, D. (2013). Plant Core Environmental Stress Response Genes Are Systemically Coordinated during Abiotic Stresses. International journal of molecular sciences 14, 7617-7641.
Hahn, A., et al., 2013. Plant Core Environmental Stress Response Genes Are Systemically Coordinated during Abiotic Stresses. International journal of molecular sciences, 14(4), p 7617-7641.
A. Hahn, et al., “Plant Core Environmental Stress Response Genes Are Systemically Coordinated during Abiotic Stresses”, International journal of molecular sciences, vol. 14, 2013, pp. 7617-7641.
Hahn, A., Kilian, J., Mohrholz, A., Ladwig, F., Peschke, F., Dautel, R., Harter, K., Berendzen, K.W., Wanke, D.: Plant Core Environmental Stress Response Genes Are Systemically Coordinated during Abiotic Stresses. International journal of molecular sciences. 14, 7617-7641 (2013).
Hahn, Achim, Kilian, Joachim, Mohrholz, Anne, Ladwig, Friederike, Peschke, Florian, Dautel, Rebecca, Harter, Klaus, Berendzen, Kenneth W, and Wanke, Dierk. “Plant Core Environmental Stress Response Genes Are Systemically Coordinated during Abiotic Stresses”. International journal of molecular sciences 14.4 (2013): 7617-7641.

20 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

PropaNet: Time-Varying Condition-Specific Transcriptional Network Construction by Network Propagation.
Ahn H, Jo K, Jeong D, Pak M, Hur J, Jung W, Kim S., Front Plant Sci 10(), 2019
PMID: 31258543
Strengthening desert plant biotechnology research in the United Arab Emirates: a viewpoint.
Gairola S, Al Shaer KI, Al Harthi EK, Mosa KA., Physiol Mol Biol Plants 24(4), 2018
PMID: 30042610
Changes in iron availability in Arabidopsis are rapidly sensed in the leaf vasculature and impaired sensing leads to opposite transcriptional programs in leaves and roots.
Khan MA, Castro-Guerrero NA, McInturf SA, Nguyen NT, Dame AN, Wang J, Bindbeutel RK, Joshi T, Jurisson SS, Nusinow DA, Mendoza-Cozatl DG., Plant Cell Environ 41(10), 2018
PMID: 29520929
Orchestrating rapid long-distance signaling in plants with Ca2+ , ROS and electrical signals.
Choi WG, Miller G, Wallace I, Harper J, Mittler R, Gilroy S., Plant J 90(4), 2017
PMID: 28112437
The IDA-LIKE peptides IDL6 and IDL7 are negative modulators of stress responses in Arabidopsis thaliana.
Vie AK, Najafi J, Winge P, Cattan E, Wrzaczek M, Kangasjärvi J, Miller G, Brembu T, Bones AM., J Exp Bot 68(13), 2017
PMID: 28586470
Identification of novel transcriptional regulators of Zat12 using comprehensive yeast one-hybrid screens.
Ben Daniel BH, Cattan E, Wachtel C, Avrahami D, Glick Y, Malichy A, Gerber D, Miller G., Physiol Plant 157(4), 2016
PMID: 26923089
The ROS Wheel: Refining ROS Transcriptional Footprints.
Willems P, Mhamdi A, Stael S, Storme V, Kerchev P, Noctor G, Gevaert K, Van Breusegem F., Plant Physiol 171(3), 2016
PMID: 27246095
Costs, benefits and redundant mechanisms of adaption to chronic low-dose stress in yeast.
Markiewicz-Potoczny M, Lydall D., Cell Cycle 15(20), 2016
PMID: 27628486
Multidimensional patterns of metabolic response in abiotic stress-induced growth of Arabidopsis thaliana.
Yadav BS, Lahav T, Reuveni E, Chamovitz DA, Freilich S., Plant Mol Biol 92(6), 2016
PMID: 27633976
Tobacco drought stress responses reveal new targets for Solanaceae crop improvement.
Rabara RC, Tripathi P, Reese RN, Rushton DL, Alexander D, Timko MP, Shen QJ, Rushton PJ., BMC Genomics 16(), 2015
PMID: 26123791

77 References

Daten bereitgestellt von Europe PubMed Central.

How plants recognize pathogens and defend themselves
De P.J.., 2007
Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization.
Guimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U., Proc. Natl. Acad. Sci. U.S.A. 102(22), 2005
PMID: 15905328
Prerequisites, performance and profits of transcriptional profiling the abiotic stress response.
Kilian J, Peschke F, Berendzen KW, Harter K, Wanke D., Biochim. Biophys. Acta 1819(2), 2011
PMID: 22001611
The AtGenExpress global stress expression data set: Protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses
Kilian J., Whitehead D., Horak J., Wanke D., Weinl S., Batistic O., D’Angelo C., Bornberg-Bauer E., Kudla J., Harter K.., 2007
Tackling drought stress: receptor-like kinases present new approaches.
Marshall A, Aalen RB, Audenaert D, Beeckman T, Broadley MR, Butenko MA, Cano-Delgado AI, de Vries S, Dresselhaus T, Felix G, Graham NS, Foulkes J, Granier C, Greb T, Grossniklaus U, Hammond JP, Heidstra R, Hodgman C, Hothorn M, Inze D, Ostergaard L, Russinova E, Simon R, Skirycz A, Stahl Y, Zipfel C, De Smet I., Plant Cell 24(6), 2012
PMID: 22693282
Regulation of shoot and root development through mutual signaling.
Puig J, Pauluzzi G, Guiderdoni E, Gantet P., Mol Plant 5(5), 2012
PMID: 22628542
Phloem small RNAs, nutrient stress responses, and systemic mobility.
Buhtz A, Pieritz J, Springer F, Kehr J., BMC Plant Biol. 10(), 2010
PMID: 20388194
MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis
Pant B.D., Buhtz A., Kehr J., Scheible W.R.., 2008
The sequences of Arabidopsis GA-INSENSITIVE RNA constitute the motifs that are necessary and sufficient for RNA long-distance trafficking
Huang N.C., Yu T.S.., 2009
FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis.
Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G., Science 316(5827), 2007
PMID: 17446353
MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor.
Schlereth A, Moller B, Liu W, Kientz M, Flipse J, Rademacher EH, Schmid M, Jurgens G, Weijers D., Nature 464(7290), 2010
PMID: 20220754
Plant signalling peptides: Some recent developments
Bahyrycz A., Konopinska D.., 2007
Systemic acquired resistance: the elusive signal(s).
Vlot AC, Klessig DF, Park SW., Curr. Opin. Plant Biol. 11(4), 2008
PMID: 18614393
Fine-Tuning Plant Defence Signalling: Salicylate versus Jasmonate.
Beckers GJ, Spoel SH., Plant Biol (Stuttg) 8(1), 2006
PMID: 16435264
Jasmonate controls polypeptide patterning in undamaged tissue in wounded Arabidopsis leaves.
Gfeller A, Baerenfaller K, Loscos J, Chetelat A, Baginsky S, Farmer EE., Plant Physiol. 156(4), 2011
PMID: 21693672
Jasmonates
Acosta I.F., Farmer E.E.., 2010
Priming in systemic plant immunity.
Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT., Science 324(5923), 2009
PMID: 19342588
Oxidative stress provokes distinct transcriptional responses in the stress-tolerant atr7 and stress-sensitive loh2 Arabidopsis thaliana mutants as revealed by multi-parallel quantitative real-time PCR analysis of ROS marker and antioxidant genes
Mehterov N., Balazadeh S., Hille J., Toneva V., Mueller-Roeber B., Gechev T.., 2012
The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli.
Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R., Sci Signal 2(84), 2009
PMID: 19690331
Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity.
Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C., Cell 92(6), 1998
PMID: 9529253
New functions for electrical signals in plants.
Davies E., New Phytol. 161(3), 2004
PMID: IND43667423
System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding.
Zimmermann MR, Maischak H, Mithofer A, Boland W, Felle HH., Plant Physiol. 149(3), 2009
PMID: 19129416
Systemic signalling in barley through action potentials.
Felle HH, Zimmermann MR., Planta 226(1), 2007
PMID: 17226028
ABA perception and signalling.
Raghavendra AS, Gonugunta VK, Christmann A, Grill E., Trends Plant Sci. 15(7), 2010
PMID: 20493758
A hydraulic signal in root-to-shoot signalling of water shortage
Christmann A., Weiler E.W., Steudle E., Grill E.., 2007
The core regulation module of stress-responsive regulatory networks in yeast.
Kim D, Kim MS, Cho KH., Nucleic Acids Res. 40(18), 2012
PMID: 22784859
Remodeling of yeast genome expression in response to environmental changes.
Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA., Mol. Biol. Cell 12(2), 2001
PMID: 11179418
Global transcriptional responses of fission yeast to environmental stress.
Chen D, Toone WM, Mata J, Lyne R, Burns G, Kivinen K, Brazma A, Jones N, Bahler J., Mol. Biol. Cell 14(1), 2003
PMID: 12529438
Insights into the Arabidopsis Abiotic Stress Response from the AtGenExpress Expression Profile Dataset
Wanke D., Berendzen K.W., Kilian J., Harter K., 2009
Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis.
Le DT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Ham le H, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS., PLoS ONE 7(11), 2012
PMID: 23189148
Abiotic stress, the field environment and stress combination.
Mittler R., Trends Plant Sci. 11(1), 2005
PMID: 16359910
WRKY transcription factors: key components in abscisic acid signalling.
Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, Boken AK, Langum TJ, Smidt L, Boomsma DD, Emme NJ, Chen X, Finer JJ, Shen QJ, Rushton PJ., Plant Biotechnol. J. 10(1), 2011
PMID: 21696534
Volatiles of two growth-inhibiting rhizobacteria commonly engage AtWRKY18 function
Wenke K., Wanke D., Kilian J., Berendzen K., Harter K., Piechulla B.., 2012
Co-expression of AtbHLH17 and AtWRKY28 confers resistance to abiotic stress in Arabidopsis.
Babitha KC, Ramu SV, Pruthvi V, Mahesh P, Nataraja KN, Udayakumar M., Transgenic Res. 22(2), 2012
PMID: 22948308
ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis
Ren X., Chen Z., Liu Y., Zhang H., Zhang M., Liu Q., Hong X., Zhu J.K., Gong Z.., 2010
The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis.
Davletova S, Schlauch K, Coutu J, Mittler R., Plant Physiol. 139(2), 2005
PMID: 16183833
Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions.
Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K., Plant Physiol. 136(1), 2004
PMID: 15333755
Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis.
Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE., PLoS Biol. 5(5), 2007
PMID: 17439305
Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis.
Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR., Cell 126(6), 2006
PMID: 16949657
Large-scale cis-element detection by analysis of correlated expression and sequence conservation between Arabidopsis and Brassica oleracea.
Haberer G, Mader MT, Kosarev P, Spannagl M, Yang L, Mayer KF., Plant Physiol. 142(4), 2006
PMID: 17028152
Overexpression of the NAC transcription factor family gene ANAC036 results in a dwarf phenotype in Arabidopsis thaliana.
Kato H, Motomura T, Komeda Y, Saito T, Kato A., J. Plant Physiol. 167(7), 2009
PMID: 19962211
A membrane-bound NAC transcription factor as an integrator of biotic and abiotic stress signals
Seo P.J., Park C.M.., 2010
Arabidopsis deadenylases AtCAF1a and AtCAF1b play overlapping and distinct roles in mediating environmental stress responses.
Walley JW, Kelley DR, Nestorova G, Hirschberg DL, Dehesh K., Plant Physiol. 152(2), 2009
PMID: 19955262
Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis.
Glauser G, Dubugnon L, Mousavi SA, Rudaz S, Wolfender JL, Farmer EE., J. Biol. Chem. 284(50), 2009
PMID: 19846562
A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis
Koo A.J., Gao X., Jones A.D., Howe G.A.., 2009
Cinnamyl-alcohol dehydrogenase, a molecular marker specific for lignin synthesis: cDNA cloning and mRNA induction by fungal elicitor.
Walter MH, Grima-Pettenati J, Grand C, Boudet AM, Lamb CJ., Proc. Natl. Acad. Sci. U.S.A. 85(15), 1988
PMID: 3041415
Exonic sequences are required for elicitor and light activation of a plant defense gene, but promoter sequences are sufficient for tissue specific expression.
Douglas CJ, Hauffe KD, Ites-Morales ME, Ellard M, Paszkowski U, Hahlbrock K, Dangl JL., EMBO J. 10(7), 1991
PMID: 2050114
Spatial and temporal analysis of the local response to wounding in Arabidopsis leaves.
Delessert C, Wilson IW, Van Der Straeten D, Dennis ES, Dolferus R., Plant Mol. Biol. 55(2), 2004
PMID: 15604673
Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress.
Mittler R, Kim Y, Song L, Coutu J, Coutu A, Ciftci-Yilmaz S, Lee H, Stevenson B, Zhu JK., FEBS Lett. 580(28-29), 2006
PMID: 17112521
Systemic and intracellular responses to photooxidative stress in Arabidopsis.
Rossel JB, Wilson PB, Hussain D, Woo NS, Gordon MJ, Mewett OP, Howell KA, Whelan J, Kazan K, Pogson BJ., Plant Cell 19(12), 2007
PMID: 18156220
Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis.
Lang-Mladek C, Popova O, Kiok K, Berlinger M, Rakic B, Aufsatz W, Jonak C, Hauser MT, Luschnig C., Mol Plant 3(3), 2010
PMID: 20410255
Control of flowering and cell fate by LIF2, an RNA binding partner of the polycomb complex component LHP1.
Latrasse D, Germann S, Houba-Herin N, Dubois E, Bui-Prodhomme D, Hourcade D, Juul-Jensen T, Le Roux C, Majira A, Simoncello N, Granier F, Taconnat L, Renou JP, Gaudin V., PLoS ONE 6(1), 2011
PMID: 21304947
Histone occupancy-dependent and -independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis
Kwon C.S., Lee D., Choi G., Chung W.I.., 2009
Pathogen-induced systemic plant signal triggers DNA rearrangements.
Kovalchuk I, Kovalchuk O, Kalck V, Boyko V, Filkowski J, Heinlein M, Hohn B., Nature 423(6941), 2003
PMID: 12802336
Bioconductor: open software development for computational biology and bioinformatics.
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J., Genome Biol. 5(10), 2004
PMID: 15461798

AUTHOR UNKNOWN, 0
GO term enrichment at The Arabidopsis Information Resource’s Gene Ontology (GO) annotation search page
AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Athena: a resource for rapid visualization and systematic analysis of Arabidopsis promoter sequences.
O'Connor TR, Dyreson C, Wyrick JJ., Bioinformatics 21(24), 2005
PMID: 16223790

AUTHOR UNKNOWN, 0
PlnTFDB: updated content and new features of the plant transcription factor database.
Perez-Rodriguez P, Riano-Pachon DM, Correa LG, Rensing SA, Kersten B, Mueller-Roeber B., Nucleic Acids Res. 38(Database issue), 2009
PMID: 19858103
The AtGenExpress hormone and chemical treatment data set: Experimental design, data evaluation, model data analysis and data access
Goda H., Sasaki E., Akiyama K., Maruyama-Nakashita A., Nakabayashi K., Li W., Ogawa M., Yamauchi Y., Preston J., Aoki K.., 2008

AUTHOR UNKNOWN, 0
Integration of biological networks and gene expression data using Cytoscape.
Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B, Hanspers K, Isserlin R, Kelley R, Killcoyne S, Lotia S, Maere S, Morris J, Ono K, Pavlovic V, Pico AR, Vailaya A, Wang PL, Adler A, Conklin BR, Hood L, Kuiper M, Sander C, Schmulevich I, Schwikowski B, Warner GJ, Ideker T, Bader GD., Nat Protoc 2(10), 2007
PMID: 17947979
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23567274
PubMed | Europe PMC

Suchen in

Google Scholar