Transient oscillation of shape and membrane conductivity changes by field pulse-induced electroporation in nano-sized phospholipid vesicles

Dimitrov V, Kakorin S, Neumann E (2013)
Physical Chemistry Chemical Physics 15(17): 6303-6322.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
The results of electrooptical and conductometrical measurements on unilamellar lipid vesicles (of mean radius a = 90 nm), filled with 0.2 M NaCl solution, suspended in 0.33 M sucrose solution of 0.2 mM NaCl, and exposed to a stepwise decaying electric field (time constant tau(E) = 154 mu s) in the range 10 <= E-0 (kV cm(-1)) <= 90, are analyzed in terms of cyclic changes in vesicle shape and vesicle membrane conductivity. The two peaks in the dichroitic turbidity relaxations reflect two cycles of rapid membrane electroporation and slower resealing of long-lived electropores. The field-induced changes reflect structural transitions between closed (C) and porated (P) membrane states, qualified by pores of type P-1 and of type P-2, respectively. The transient change in the membrane conductivity and the transient shape oscillation are based on changes in the pore density of the (larger) P-2-pores along a hysteresis cycle. The P-2-pore formation leads to transient net ion flows across the P-2-pores and to transient changes in the membrane field. The kinetic data are numerically processed in terms of coupled structural relaxation modes. Using the torus-hole pore model, the mean inner pore radii are estimated to be r(1) = 0.38 (+/- 0.05) nm and r(2) = 1.7 (+/- 0.1) nm, respectively. The observation of a transient oscillation of membrane electroporation and of shape changes in a longer lasting external field pulse is suggestive of potential resonance enhancement, for instance, of electro-uptake by, and of electro-release of biogenic molecules from, biological cells in trains of long-lasting low-intensity voltage pulses.
Erscheinungsjahr
2013
Zeitschriftentitel
Physical Chemistry Chemical Physics
Band
15
Ausgabe
17
Seite(n)
6303-6322
ISSN
1463-9076
eISSN
1463-9084
Page URI
https://pub.uni-bielefeld.de/record/2578776

Zitieren

Dimitrov V, Kakorin S, Neumann E. Transient oscillation of shape and membrane conductivity changes by field pulse-induced electroporation in nano-sized phospholipid vesicles. Physical Chemistry Chemical Physics. 2013;15(17):6303-6322.
Dimitrov, V., Kakorin, S., & Neumann, E. (2013). Transient oscillation of shape and membrane conductivity changes by field pulse-induced electroporation in nano-sized phospholipid vesicles. Physical Chemistry Chemical Physics, 15(17), 6303-6322. doi:10.1039/c3cp42873g
Dimitrov, Vasil, Kakorin, Sergej, and Neumann, Eberhard. 2013. “Transient oscillation of shape and membrane conductivity changes by field pulse-induced electroporation in nano-sized phospholipid vesicles”. Physical Chemistry Chemical Physics 15 (17): 6303-6322.
Dimitrov, V., Kakorin, S., and Neumann, E. (2013). Transient oscillation of shape and membrane conductivity changes by field pulse-induced electroporation in nano-sized phospholipid vesicles. Physical Chemistry Chemical Physics 15, 6303-6322.
Dimitrov, V., Kakorin, S., & Neumann, E., 2013. Transient oscillation of shape and membrane conductivity changes by field pulse-induced electroporation in nano-sized phospholipid vesicles. Physical Chemistry Chemical Physics, 15(17), p 6303-6322.
V. Dimitrov, S. Kakorin, and E. Neumann, “Transient oscillation of shape and membrane conductivity changes by field pulse-induced electroporation in nano-sized phospholipid vesicles”, Physical Chemistry Chemical Physics, vol. 15, 2013, pp. 6303-6322.
Dimitrov, V., Kakorin, S., Neumann, E.: Transient oscillation of shape and membrane conductivity changes by field pulse-induced electroporation in nano-sized phospholipid vesicles. Physical Chemistry Chemical Physics. 15, 6303-6322 (2013).
Dimitrov, Vasil, Kakorin, Sergej, and Neumann, Eberhard. “Transient oscillation of shape and membrane conductivity changes by field pulse-induced electroporation in nano-sized phospholipid vesicles”. Physical Chemistry Chemical Physics 15.17 (2013): 6303-6322.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Imaging the dynamics of individual electropores.
Sengel JT, Wallace MI., Proc Natl Acad Sci U S A 113(19), 2016
PMID: 27114528
Nanoparticle mechanics: deformation detection via nanopore resistive pulse sensing.
Darvish A, Goyal G, Aneja R, Sundaram RV, Lee K, Ahn CW, Kim KB, Vlahovska PM, Kim MJ., Nanoscale 8(30), 2016
PMID: 27321911

45 References

Daten bereitgestellt von Europe PubMed Central.

Gene transfer into mouse lyoma cells by electroporation in high electric fields.
Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH., EMBO J. 1(7), 1982
PMID: 6329708

Wong, Biophys. Biochem. Res. Commun. 107(), 1982

Mir, Bioelectrochem. Bioenerg. 38(), 1995
Bleomycin: revival of an old drug.
Mir LM, Tounekti O, Orlowski S., Gen. Pharmacol. 27(5), 1996
PMID: 8842674
Phase I/II trial for the treatment of cutaneous and subcutaneous tumors using electrochemotherapy.
Heller R, Jaroszeski MJ, Glass LF, Messina JL, Rapaport DP, DeConti RC, Fenske NA, Gilbert RA, Mir LM, Reintgen DS., Cancer 77(5), 1996
PMID: 8608491
Efficiency of high- and low-voltage pulse combinations for gene electrotransfer in muscle, liver, tumor, and skin.
Andre FM, Gehl J, Sersa G, Preat V, Hojman P, Eriksen J, Golzio M, Cemazar M, Pavselj N, Rols MP, Miklavcic D, Neumann E, Teissie J, Mir LM., Hum. Gene Ther. 19(11), 2008
PMID: 19866490
Permeability changes induced by electric impulses in vesicular membranes.
Neumann E, Rosenheck K., J. Membr. Biol. 10(3), 1972
PMID: 4667921

Neumann, Naturwissenschaften 67(), 1980

Abidor, Bioelectrochem. Bioenerg. 6(), 1979

Weaver, Bioelectrochem. Bioenerg. 41(), 1996

Dimova, Soft Mater 3(), 2007
Electrohydrodynamic model of vesicle deformation in alternating electric fields.
Vlahovska PM, Gracia RS, Aranda-Espinoza S, Dimova R., Biophys. J. 96(12), 2009
PMID: 19527639
Stability of spherical vesicles in electric fields.
Yamamoto T, Aranda-Espinoza S, Dimova R, Lipowsky R., Langmuir 26(14), 2010
PMID: 20575588
Voltage-induced pore formation and hemolysis of human erythrocytes.
Kinosita K Jr, Tsong TY., Biochim. Biophys. Acta 471(2), 1977
PMID: 921980

Helfrich, Z. Naturforsc. [C] 28(), 1973

Zimmerberg, Nature Rev. Mol. Biol. 7(), 2006

Neumann, Curr. Opin. Coll. Int. Sci. 1(), 1996

Kakorin, Eur. Biophys. J. 27(), 1998
Annexin V and vesicle membrane electroporation.
Tonsing K, Kakorin S, Neumann E, Liemann S, Huber R., Eur. Biophys. J. 26(4), 1997
PMID: 9378099

Griese, Phys. Chem. Chem. Phys. 4(), 2002

Schmeer, Phys. Chem. Chem. Phys. 6(), 2004

Sugar, J. Physiol. Paris 77(), 1981
Stochastic model for electric field-induced membrane pores. Electroporation.
Sugar IP, Neumann E., Biophys. Chem. 19(3), 1984
PMID: 6722274
Light scattering by a core-mantle spheroidal particle.
Farafonov VG, Voshchinnikov NV, Somsikov VV., Appl Opt 35(27), 1996
PMID: 21127540

Sersa, Bioelectrochem. Bioenerg. 43(), 1997

Kakorin, Ber. Bunsenges. Phys. Chem. 100(), 1996

Kakorin, Coll. Surf. A. 209(), 2002

Neumann, Faraday Discuss. 111(), 1998
Conformation changes in rRNA induced by electric impulses.
Revzin A, Neumann E., Biophys. Chem. 2(2), 1974
PMID: 4611518
Electrical properties of tissue and cell suspensions.
SCHWAN HP., Adv Biol Med Phys 5(), 1957
PMID: 13520431
Ion transport across transmembrane pores.
Leontiadou H, Mark AE, Marrink SJ., Biophys. J. 92(12), 2007
PMID: 17384063
Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations.
Bockmann RA, de Groot BL, Kakorin S, Neumann E, Grubmuller H., Biophys. J. 95(4), 2008
PMID: 18469089

Fricke, J. Appl. Phys. 24(), 1953

Kakorin, J. Phys. Chem. B 107(), 2003

Kakorin, Ber. Bunsen-Ges. Phys. Chem. 102(), 1998
Ionic conductivity of electroporated lipid bilayer membranes.
Kakorin S, Neumann E., Bioelectrochemistry 56(1-2), 2002
PMID: 12009466
Atomistic simulations of bicelle mixtures.
Jiang Y, Wang H, Kindt JT., Biophys. J. 98(12), 2010
PMID: 20550902
Asymmetric pore distribution and loss of membrane lipid in electroporated DOPC vesicles.
Tekle E, Astumian RD, Friauf WA, Chock PB., Biophys. J. 81(2), 2001
PMID: 11463638
High electrical field effects on cell membranes.
Pliquett U, Joshi RP, Sridhara V, Schoenbach KH., Bioelectrochemistry 70(2), 2006
PMID: 17123870

Tamura, Adv. Mol. Relax. Interact. Processes 24(), 1982
The dielectric properties of water within model transbilayer pores.
Sansom MS, Smith GR, Adcock C, Biggin PC., Biophys. J. 73(5), 1997
PMID: 9370434
Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces.
Gawrisch K, Ruston D, Zimmerberg J, Parsegian VA, Rand RP, Fuller N., Biophys. J. 61(5), 1992
PMID: 1600081
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23519343
PubMed | Europe PMC

Suchen in

Google Scholar