The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty
Riechers B, Wittbracht F, Hütten A, Koop T (2013)
Physical Chemistry Chemical Physics 15(16): 5873-5887.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
Ice nucleation was investigated experimentally in water droplets with diameters between 53 and 96 micrometres. The droplets were produced in a microfluidic device in which a flow of methyl-cyclohexane and water was combined at the T-junction of micro-channels yielding inverse (water-in-oil) emulsions consisting of water droplets with small standard deviations. In cryo-microscopic experiments we confirmed that upon cooling of such emulsion samples ice nucleation in individual droplets occurred independently of each other as required for the investigation of a stochastic process. The emulsion samples were then subjected to cooling at 1 Kelvin per minute in a differential scanning calorimeter with high temperature accuracy. From the latent heat released by freezing water droplets we inferred the volume-dependent homogeneous ice nucleation rate coefficient of water at temperatures between 236.5 and 237.9 Kelvin. A comparison of our newly derived values to existing rate coefficients from other studies suggests that the volume-dependent ice nucleation rate in supercooled water is slightly lower than previously thought. Moreover, a comprehensive error analysis suggests that absolute temperature accuracy is the single most important experimental parameter determining the uncertainty of the derived ice nucleation rates in our experiments, and presumably also in many previous experiments. Our analysis, thus, also provides a route for improving the accuracy of future ice nucleation rate measurements.
Erscheinungsjahr
2013
Zeitschriftentitel
Physical Chemistry Chemical Physics
Band
15
Ausgabe
16
Seite(n)
5873-5887
ISSN
1463-9076
eISSN
1463-9084
Page URI
https://pub.uni-bielefeld.de/record/2578764
Zitieren
Riechers B, Wittbracht F, Hütten A, Koop T. The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty. Physical Chemistry Chemical Physics. 2013;15(16):5873-5887.
Riechers, B., Wittbracht, F., Hütten, A., & Koop, T. (2013). The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty. Physical Chemistry Chemical Physics, 15(16), 5873-5887. doi:10.1039/c3cp42437e
Riechers, Birte, Wittbracht, Frank, Hütten, Andreas, and Koop, Thomas. 2013. “The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty”. Physical Chemistry Chemical Physics 15 (16): 5873-5887.
Riechers, B., Wittbracht, F., Hütten, A., and Koop, T. (2013). The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty. Physical Chemistry Chemical Physics 15, 5873-5887.
Riechers, B., et al., 2013. The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty. Physical Chemistry Chemical Physics, 15(16), p 5873-5887.
B. Riechers, et al., “The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty”, Physical Chemistry Chemical Physics, vol. 15, 2013, pp. 5873-5887.
Riechers, B., Wittbracht, F., Hütten, A., Koop, T.: The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty. Physical Chemistry Chemical Physics. 15, 5873-5887 (2013).
Riechers, Birte, Wittbracht, Frank, Hütten, Andreas, and Koop, Thomas. “The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty”. Physical Chemistry Chemical Physics 15.16 (2013): 5873-5887.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
23 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Direct electrochemical generation of supercooled sulfur microdroplets well below their melting temperature.
Liu N, Zhou G, Yang A, Yu X, Shi F, Sun J, Zhang J, Liu B, Wu CL, Tao X, Sun Y, Cui Y, Chu S., Proc Natl Acad Sci U S A 116(3), 2019
PMID: 30602455
Liu N, Zhou G, Yang A, Yu X, Shi F, Sun J, Zhang J, Liu B, Wu CL, Tao X, Sun Y, Cui Y, Chu S., Proc Natl Acad Sci U S A 116(3), 2019
PMID: 30602455
Aescin-Cholesterol Complexes in DMPC Model Membranes: A DSC and Temperature-Dependent Scattering Study.
Sreij R, Dargel C, Schweins R, Prévost S, Dattani R, Hellweg T., Sci Rep 9(1), 2019
PMID: 30944386
Sreij R, Dargel C, Schweins R, Prévost S, Dattani R, Hellweg T., Sci Rep 9(1), 2019
PMID: 30944386
Drivers of apoplastic freezing in gymnosperm and angiosperm branches.
Lintunen A, Mayr S, Salmon Y, Cochard H, Hölttä T., Ecol Evol 8(1), 2018
PMID: 29321875
Lintunen A, Mayr S, Salmon Y, Cochard H, Hölttä T., Ecol Evol 8(1), 2018
PMID: 29321875
Shrinking of Rapidly Evaporating Water Microdroplets Reveals their Extreme Supercooling.
Goy C, Potenza MAC, Dedera S, Tomut M, Guillerm E, Kalinin A, Voss KO, Schottelius A, Petridis N, Prosvetov A, Tejeda G, Fernández JM, Trautmann C, Caupin F, Glasmacher U, Grisenti RE., Phys Rev Lett 120(1), 2018
PMID: 29350942
Goy C, Potenza MAC, Dedera S, Tomut M, Guillerm E, Kalinin A, Voss KO, Schottelius A, Petridis N, Prosvetov A, Tejeda G, Fernández JM, Trautmann C, Caupin F, Glasmacher U, Grisenti RE., Phys Rev Lett 120(1), 2018
PMID: 29350942
The study of atmospheric ice-nucleating particles via microfluidically generated droplets.
Tarn MD, Sikora SNF, Porter GCE, O'Sullivan D, Adams M, Whale TF, Harrison AD, Vergara-Temprado J, Wilson TW, Shim JU, Murray BJ., Microfluid Nanofluidics 22(5), 2018
PMID: 29720926
Tarn MD, Sikora SNF, Porter GCE, O'Sullivan D, Adams M, Whale TF, Harrison AD, Vergara-Temprado J, Wilson TW, Shim JU, Murray BJ., Microfluid Nanofluidics 22(5), 2018
PMID: 29720926
Boreal pollen contain ice-nucleating as well as ice-binding 'antifreeze' polysaccharides.
Dreischmeier K, Budke C, Wiehemeier L, Kottke T, Koop T., Sci Rep 7(), 2017
PMID: 28157236
Dreischmeier K, Budke C, Wiehemeier L, Kottke T, Koop T., Sci Rep 7(), 2017
PMID: 28157236
Controlled ice nucleation using freeze-dried Pseudomonas syringae encapsulated in alginate beads.
Weng L, Tessier SN, Swei A, Stott SL, Toner M., Cryobiology 75(), 2017
PMID: 28315320
Weng L, Tessier SN, Swei A, Stott SL, Toner M., Cryobiology 75(), 2017
PMID: 28315320
Progress of crystallization in microfluidic devices.
Shi HH, Xiao Y, Ferguson S, Huang X, Wang N, Hao HX., Lab Chip 17(13), 2017
PMID: 28585942
Shi HH, Xiao Y, Ferguson S, Huang X, Wang N, Hao HX., Lab Chip 17(13), 2017
PMID: 28585942
Perspective: Surface freezing in water: A nexus of experiments and simulations.
Haji-Akbari A, Debenedetti PG., J Chem Phys 147(6), 2017
PMID: 28810776
Haji-Akbari A, Debenedetti PG., J Chem Phys 147(6), 2017
PMID: 28810776
Tuning Ice Nucleation with Supercharged Polypeptides.
Yang H, Ma C, Li K, Liu K, Loznik M, Teeuwen R, van Hest JC, Zhou X, Herrmann A, Wang J., Adv Mater 28(25), 2016
PMID: 27119590
Yang H, Ma C, Li K, Liu K, Loznik M, Teeuwen R, van Hest JC, Zhou X, Herrmann A, Wang J., Adv Mater 28(25), 2016
PMID: 27119590
Water: A Tale of Two Liquids.
Gallo P, Amann-Winkel K, Angell CA, Anisimov MA, Caupin F, Chakravarty C, Lascaris E, Loerting T, Panagiotopoulos AZ, Russo J, Sellberg JA, Stanley HE, Tanaka H, Vega C, Xu L, Pettersson LG., Chem Rev 116(13), 2016
PMID: 27380438
Gallo P, Amann-Winkel K, Angell CA, Anisimov MA, Caupin F, Chakravarty C, Lascaris E, Loerting T, Panagiotopoulos AZ, Russo J, Sellberg JA, Stanley HE, Tanaka H, Vega C, Xu L, Pettersson LG., Chem Rev 116(13), 2016
PMID: 27380438
Bacterial Ice Nucleation in Monodisperse D2O and H2O-in-Oil Emulsions.
Weng L, Tessier SN, Smith K, Edd JF, Stott SL, Toner M., Langmuir 32(36), 2016
PMID: 27495973
Weng L, Tessier SN, Smith K, Edd JF, Stott SL, Toner M., Langmuir 32(36), 2016
PMID: 27495973
Overview: Nucleation of clathrate hydrates.
Warrier P, Khan MN, Srivastava V, Maupin CM, Koh CA., J Chem Phys 145(21), 2016
PMID: 28799342
Warrier P, Khan MN, Srivastava V, Maupin CM, Koh CA., J Chem Phys 145(21), 2016
PMID: 28799342
Does the emulsification procedure influence freezing and thawing of aqueous droplets?
Hauptmann A, Handle KF, Baloh P, Grothe H, Loerting T., J Chem Phys 145(21), 2016
PMID: 28799359
Hauptmann A, Handle KF, Baloh P, Grothe H, Loerting T., J Chem Phys 145(21), 2016
PMID: 28799359
On the time required to freeze water.
Espinosa JR, Navarro C, Sanz E, Valeriani C, Vega C., J Chem Phys 145(21), 2016
PMID: 28799362
Espinosa JR, Navarro C, Sanz E, Valeriani C, Vega C., J Chem Phys 145(21), 2016
PMID: 28799362
A physically constrained classical description of the homogeneous nucleation of ice in water.
Koop T, Murray BJ., J Chem Phys 145(21), 2016
PMID: 28799369
Koop T, Murray BJ., J Chem Phys 145(21), 2016
PMID: 28799369
Classical nucleation theory of homogeneous freezing of water: thermodynamic and kinetic parameters.
Ickes L, Welti A, Hoose C, Lohmann U., Phys Chem Chem Phys 17(8), 2015
PMID: 25627933
Ickes L, Welti A, Hoose C, Lohmann U., Phys Chem Chem Phys 17(8), 2015
PMID: 25627933
Sensitivity of liquid clouds to homogenous freezing parameterizations.
Herbert RJ, Murray BJ, Dobbie SJ, Koop T., Geophys Res Lett 42(5), 2015
PMID: 26074652
Herbert RJ, Murray BJ, Dobbie SJ, Koop T., Geophys Res Lett 42(5), 2015
PMID: 26074652
Anomalous Behavior of the Homogeneous Ice Nucleation Rate in "No-Man's Land".
Laksmono H, McQueen TA, Sellberg JA, Loh ND, Huang C, Schlesinger D, Sierra RG, Hampton CY, Nordlund D, Beye M, Martin AV, Barty A, Seibert MM, Messerschmidt M, Williams GJ, Boutet S, Amann-Winkel K, Loerting T, Pettersson LG, Bogan MJ, Nilsson A., J Phys Chem Lett 6(14), 2015
PMID: 26207172
Laksmono H, McQueen TA, Sellberg JA, Loh ND, Huang C, Schlesinger D, Sierra RG, Hampton CY, Nordlund D, Beye M, Martin AV, Barty A, Seibert MM, Messerschmidt M, Williams GJ, Boutet S, Amann-Winkel K, Loerting T, Pettersson LG, Bogan MJ, Nilsson A., J Phys Chem Lett 6(14), 2015
PMID: 26207172
Ice Nucleation Properties of Oxidized Carbon Nanomaterials.
Whale TF, Rosillo-Lopez M, Murray BJ, Salzmann CG., J Phys Chem Lett 6(15), 2015
PMID: 26267196
Whale TF, Rosillo-Lopez M, Murray BJ, Salzmann CG., J Phys Chem Lett 6(15), 2015
PMID: 26267196
Theoretical study of the pathway to heterogeneous nucleation of liquid copper on the groove substrate with different wedge angles.
Zhou X, Wu W, He Y, Li Y, Wang L, Li H., Phys Chem Chem Phys 17(32), 2015
PMID: 26203899
Zhou X, Wu W, He Y, Li Y, Wang L, Li H., Phys Chem Chem Phys 17(32), 2015
PMID: 26203899
Competition between ices Ih and Ic in homogeneous water freezing.
Zaragoza A, Conde MM, Espinosa JR, Valeriani C, Vega C, Sanz E., J Chem Phys 143(13), 2015
PMID: 26450320
Zaragoza A, Conde MM, Espinosa JR, Valeriani C, Vega C, Sanz E., J Chem Phys 143(13), 2015
PMID: 26450320
A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets.
Knopf DA, Alpert PA., Faraday Discuss 165(), 2013
PMID: 24601020
Knopf DA, Alpert PA., Faraday Discuss 165(), 2013
PMID: 24601020
85 References
Daten bereitgestellt von Europe PubMed Central.
Bartels-Rausch, Rev. Mod. Phys. 84(), 2012
Predicting global atmospheric ice nuclei distributions and their impacts on climate.
DeMott PJ, Prenni AJ, Liu X, Kreidenweis SM, Petters MD, Twohy CH, Richardson MS, Eidhammer T, Rogers DC., Proc. Natl. Acad. Sci. U.S.A. 107(25), 2010
PMID: 20534566
DeMott PJ, Prenni AJ, Liu X, Kreidenweis SM, Petters MD, Twohy CH, Richardson MS, Eidhammer T, Rogers DC., Proc. Natl. Acad. Sci. U.S.A. 107(25), 2010
PMID: 20534566
Water activity as the determinant for homogeneous ice nucleation in aqueous solutions
Koop T, Luo B, Tsias A, Peter T., Nature 406(6796), 2000
PMID: 10949298
Koop T, Luo B, Tsias A, Peter T., Nature 406(6796), 2000
PMID: 10949298
Möhler, Biogeosciences 4(), 2007
Freezing injury: the special case of the sperm cell.
John Morris G, Acton E, Murray BJ, Fonseca F., Cryobiology 64(2), 2011
PMID: 22197768
John Morris G, Acton E, Murray BJ, Fonseca F., Cryobiology 64(2), 2011
PMID: 22197768
Ice nucleation and antinucleation in nature.
Zachariassen KE, Kristiansen E., Cryobiology 41(4), 2000
PMID: 11222024
Zachariassen KE, Kristiansen E., Cryobiology 41(4), 2000
PMID: 11222024
Roberts, AIChE J. 48(), 2002
Li, J. Food Eng. 54(), 2002
Pruppacher, J. Atmos. Sci. 52(), 1995
Cantrell, Bull. Am. Meteorol. Soc. 86(), 2005
Atmosphere. When dry air is too humid.
Peter T, Marcolli C, Spichtinger P, Corti T, Baker MB, Koop T., Science 314(5804), 2006
PMID: 17138887
Peter T, Marcolli C, Spichtinger P, Corti T, Baker MB, Koop T., Science 314(5804), 2006
PMID: 17138887
Zobrist, Atmos. Chem. Phys. 8(), 2008
Murray, Atmos. Chem. Phys. 8(), 2008
Kärcher, Atmos. Chem. Phys. 5(), 2005
Koop, Z. Phys. Chem. 218(), 2004
Iannone, Atmos. Chem. Phys. 11(), 2011
Knopf, Nat. Geosci. 4(), 2011
Möhler, Biogeosciences 5(), 2008
Ice nucleation by particles immersed in supercooled cloud droplets.
Murray BJ, O'Sullivan D, Atkinson JD, Webb ME., Chem Soc Rev 41(19), 2012
PMID: 22932664
Murray BJ, O'Sullivan D, Atkinson JD, Webb ME., Chem Soc Rev 41(19), 2012
PMID: 22932664
Ice nucleation by alcohols arranged in monolayers at the surface of water drops.
Gavish M, Popovitz-Biro R, Lahav M, Leiserowitz L., Science 250(4983), 1990
PMID: 17746923
Gavish M, Popovitz-Biro R, Lahav M, Leiserowitz L., Science 250(4983), 1990
PMID: 17746923
Lüönd, J. Geophys. Res., [Atmos.] 115(), 2010
Murray, Atmos. Chem. Phys. 11(), 2011
Niedermeier, Atmos. Chem. Phys. 10(), 2010
Deep convective clouds with sustained supercooled liquid water down to -37.5 degrees C
Rosenfeld D, Woodley WL., Nature 405(6785), 2000
PMID: 10839535
Rosenfeld D, Woodley WL., Nature 405(6785), 2000
PMID: 10839535
Heymsfield, J. Atmos. Sci. 62(), 2005
Djikaev, J. Phys. Chem. A 106(), 2002
Surface crystallization of supercooled water in clouds.
Tabazadeh A, Djikaev YS, Reiss H., Proc. Natl. Acad. Sci. U.S.A. 99(25), 2002
PMID: 12456877
Tabazadeh A, Djikaev YS, Reiss H., Proc. Natl. Acad. Sci. U.S.A. 99(25), 2002
PMID: 12456877
Kuhn, Atmos. Chem. Phys. 11(), 2011
Homogeneous freezing of water starts in the subsurface.
Vrbka L, Jungwirth P., J Phys Chem B 110(37), 2006
PMID: 16970424
Vrbka L, Jungwirth P., J Phys Chem B 110(37), 2006
PMID: 16970424
Duft, Atmos. Chem. Phys. 4(), 2004
Benz, J. Photochem. Photobiol., A 176(), 2005
Earle, Atmos. Chem. Phys. 10(), 2010
Rates of homogeneous ice nucleation in levitated H2O and D2O droplets.
Stockel P, Weidinger IM, Baumgartel H, Leisner T., J Phys Chem A 109(11), 2005
PMID: 16833556
Stockel P, Weidinger IM, Baumgartel H, Leisner T., J Phys Chem A 109(11), 2005
PMID: 16833556
A microfluidic apparatus for the study of ice nucleation in supercooled water drops.
Stan CA, Schneider GF, Shevkoplyas SS, Hashimoto M, Ibanescu M, Wiley BJ, Whitesides GM., Lab Chip 9(16), 2009
PMID: 19636459
Stan CA, Schneider GF, Shevkoplyas SS, Hashimoto M, Ibanescu M, Wiley BJ, Whitesides GM., Lab Chip 9(16), 2009
PMID: 19636459
Kinetics of the homogeneous freezing of water.
Murray BJ, Broadley SL, Wilson TW, Bull SJ, Wills RH, Christenson HK, Murray EJ., Phys Chem Chem Phys 12(35), 2010
PMID: 20577704
Murray BJ, Broadley SL, Wilson TW, Bull SJ, Wills RH, Christenson HK, Murray EJ., Phys Chem Chem Phys 12(35), 2010
PMID: 20577704
Freezing water in no-man's land.
Manka A, Pathak H, Tanimura S, Wolk J, Strey R, Wyslouzil BE., Phys Chem Chem Phys 14(13), 2012
PMID: 22354018
Manka A, Pathak H, Tanimura S, Wolk J, Strey R, Wyslouzil BE., Phys Chem Chem Phys 14(13), 2012
PMID: 22354018
On the role of surface charges for homogeneous freezing of supercooled water microdroplets.
Rzesanke D, Nadolny J, Duft D, Muller R, Kiselev A, Leisner T., Phys Chem Chem Phys 14(26), 2012
PMID: 22294097
Rzesanke D, Nadolny J, Duft D, Muller R, Kiselev A, Leisner T., Phys Chem Chem Phys 14(26), 2012
PMID: 22294097
Wood, Rev. Sci. Instrum. 73(), 2002
Hoyle, Atmos. Chem. Phys. 11(), 2011
Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
Knopf DA, Rigg YJ., J Phys Chem A 115(5), 2011
PMID: 21235213
Knopf DA, Rigg YJ., J Phys Chem A 115(5), 2011
PMID: 21235213
Sarge, Thermochim. Acta 361(), 2000
Sarge, Thermochim. Acta 247(), 1994
Della, Pure Appl. Chem. 78(), 2006
Charsley, J. Therm. Anal. 40(), 1993
Charsley, Thermochim. Acta 446(), 2006
Djikaev, J. Phys. Chem. A 108(), 2004
The formation of cubic ice under conditions relevant to Earth's atmosphere.
Murray BJ, Knopf DA, Bertram AK., Nature 434(7030), 2005
PMID: 15758996
Murray BJ, Knopf DA, Bertram AK., Nature 434(7030), 2005
PMID: 15758996
Structure of ice crystallized from supercooled water.
Malkin TL, Murray BJ, Brukhno AV, Anwar J, Salzmann CG., Proc. Natl. Acad. Sci. U.S.A. 109(4), 2012
PMID: 22232652
Malkin TL, Murray BJ, Brukhno AV, Anwar J, Salzmann CG., Proc. Natl. Acad. Sci. U.S.A. 109(4), 2012
PMID: 22232652
Homogeneous ice nucleation from supercooled water.
Li T, Donadio D, Russo G, Galli G., Phys Chem Chem Phys 13(44), 2011
PMID: 21989826
Li T, Donadio D, Russo G, Galli G., Phys Chem Chem Phys 13(44), 2011
PMID: 21989826
Is it cubic? Ice crystallization from deeply supercooled water.
Moore EB, Molinero V., Phys Chem Chem Phys 13(44), 2011
PMID: 22009135
Moore EB, Molinero V., Phys Chem Chem Phys 13(44), 2011
PMID: 22009135
Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing.
Matsumoto M, Saito S, Ohmine I., Nature 416(6879), 2002
PMID: 11919626
Matsumoto M, Saito S, Ohmine I., Nature 416(6879), 2002
PMID: 11919626
Structural transformation in supercooled water controls the crystallization rate of ice.
Moore EB, Molinero V., Nature 479(7374), 2011
PMID: 22113691
Moore EB, Molinero V., Nature 479(7374), 2011
PMID: 22113691
Brukhno, J. Phys.: Condens. Matter 20(), 2008
Koop, J. Phys. Chem. A 101(), 1997
Liquid-like relaxation in hyperquenched water at < or = 140 K.
Kohl I, Bachmann L, Hallbrucker A, Mayer E, Loerting T., Phys Chem Chem Phys 7(17), 2005
PMID: 16240034
Kohl I, Bachmann L, Hallbrucker A, Mayer E, Loerting T., Phys Chem Chem Phys 7(17), 2005
PMID: 16240034
Crystallization kinetics and excess free energy of H2O and D2O nanoscale films of amorphous solid water.
Smith RS, Matthiesen J, Knox J, Kay BD., J Phys Chem A 115(23), 2011
PMID: 21218834
Smith RS, Matthiesen J, Knox J, Kay BD., J Phys Chem A 115(23), 2011
PMID: 21218834
Thermal and nonthermal physiochemical processes in nanoscale films of amorphous solid water.
Smith RS, Petrik NG, Kimmel GA, Kay BD., Acc. Chem. Res. 45(1), 2011
PMID: 21627126
Smith RS, Petrik NG, Kimmel GA, Kay BD., Acc. Chem. Res. 45(1), 2011
PMID: 21627126
Mishima, Nature 396(), 1998
Smith, Nature 398(), 1999
Alpert, Atmos. Chem. Phys. 11(), 2011
Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM., Lab Chip 6(3), 2006
PMID: 16511628
Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM., Lab Chip 6(3), 2006
PMID: 16511628
Christopher, J. Phys. D: Appl. Phys. 40(), 2007
Friend, Biomicrofluidics 4(), 2010
Nucleation and solidification in static arrays of monodisperse drops.
Edd JF, Humphry KJ, Irimia D, Weitz DA, Toner M., Lab Chip 9(13), 2009
PMID: 19532960
Edd JF, Humphry KJ, Irimia D, Weitz DA, Toner M., Lab Chip 9(13), 2009
PMID: 19532960
Microdroplets: a sea of applications?
Huebner A, Sharma S, Srisa-Art M, Hollfelder F, Edel JB, Demello AJ., Lab Chip 8(8), 2008
PMID: 18651063
Huebner A, Sharma S, Srisa-Art M, Hollfelder F, Edel JB, Demello AJ., Lab Chip 8(8), 2008
PMID: 18651063
van, J. Phys.: Condens. Matter 22(), 2010
Chang, J. Phys. Chem. A 103(), 1999
Marcolli, Atmos. Chem. Phys. 7(), 2007
Ice recrystallization inhibition and molecular recognition of ice faces by poly(vinyl alcohol).
Budke C, Koop T., Chemphyschem 7(12), 2006
PMID: 17109452
Budke C, Koop T., Chemphyschem 7(12), 2006
PMID: 17109452
Ice recrystallization kinetics in the presence of synthetic antifreeze glycoprotein analogues using the framework of LSW theory.
Budke C, Heggemann C, Koch M, Sewald N, Koop T., J Phys Chem B 113(9), 2009
PMID: 19708116
Budke C, Heggemann C, Koch M, Sewald N, Koop T., J Phys Chem B 113(9), 2009
PMID: 19708116
Zobrist, J. Phys. Chem. C 111(), 2007
Krämer, J. Chem. Phys. 111(), 1999
Archer, J. Phys. Chem. B 104(), 2000
Bhattacharya, J. Microelectromech. Syst. 14(), 2005
Poly(oxyethylene) based surface coatings for poly(dimethylsiloxane) microchannels.
Hellmich W, Regtmeier J, Duong TT, Ros R, Anselmetti D, Ros A., Langmuir 21(16), 2005
PMID: 16042494
Hellmich W, Regtmeier J, Duong TT, Ros R, Anselmetti D, Ros A., Langmuir 21(16), 2005
PMID: 16042494
Sabourin, J. Micromech. Microeng. 19(), 2009
Stephenson, J. Am. Chem. Soc. 66(), 1944
Ruehrwein, J. Am. Chem. Soc. 65(), 1943
Chang, J. Phys. Chem. 64(), 1960
Speedy, J. Phys. Chem. 91(), 1987
Demott, J. Atmos. Sci. 47(), 1990
Ladino, J. Geophys. Res., [Atmos.] 116(), 2011
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 23486888
PubMed | Europe PMC
Suchen in