The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty

Riechers B, Wittbracht F, Hütten A, Koop T (2013)
Physical Chemistry Chemical Physics 15(16): 5873-5887.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Ice nucleation was investigated experimentally in water droplets with diameters between 53 and 96 micrometres. The droplets were produced in a microfluidic device in which a flow of methyl-cyclohexane and water was combined at the T-junction of micro-channels yielding inverse (water-in-oil) emulsions consisting of water droplets with small standard deviations. In cryo-microscopic experiments we confirmed that upon cooling of such emulsion samples ice nucleation in individual droplets occurred independently of each other as required for the investigation of a stochastic process. The emulsion samples were then subjected to cooling at 1 Kelvin per minute in a differential scanning calorimeter with high temperature accuracy. From the latent heat released by freezing water droplets we inferred the volume-dependent homogeneous ice nucleation rate coefficient of water at temperatures between 236.5 and 237.9 Kelvin. A comparison of our newly derived values to existing rate coefficients from other studies suggests that the volume-dependent ice nucleation rate in supercooled water is slightly lower than previously thought. Moreover, a comprehensive error analysis suggests that absolute temperature accuracy is the single most important experimental parameter determining the uncertainty of the derived ice nucleation rates in our experiments, and presumably also in many previous experiments. Our analysis, thus, also provides a route for improving the accuracy of future ice nucleation rate measurements.
Erscheinungsjahr
2013
Zeitschriftentitel
Physical Chemistry Chemical Physics
Band
15
Ausgabe
16
Seite(n)
5873-5887
ISSN
1463-9076
eISSN
1463-9084
Page URI
https://pub.uni-bielefeld.de/record/2578764

Zitieren

Riechers B, Wittbracht F, Hütten A, Koop T. The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty. Physical Chemistry Chemical Physics. 2013;15(16):5873-5887.
Riechers, B., Wittbracht, F., Hütten, A., & Koop, T. (2013). The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty. Physical Chemistry Chemical Physics, 15(16), 5873-5887. doi:10.1039/c3cp42437e
Riechers, Birte, Wittbracht, Frank, Hütten, Andreas, and Koop, Thomas. 2013. “The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty”. Physical Chemistry Chemical Physics 15 (16): 5873-5887.
Riechers, B., Wittbracht, F., Hütten, A., and Koop, T. (2013). The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty. Physical Chemistry Chemical Physics 15, 5873-5887.
Riechers, B., et al., 2013. The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty. Physical Chemistry Chemical Physics, 15(16), p 5873-5887.
B. Riechers, et al., “The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty”, Physical Chemistry Chemical Physics, vol. 15, 2013, pp. 5873-5887.
Riechers, B., Wittbracht, F., Hütten, A., Koop, T.: The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty. Physical Chemistry Chemical Physics. 15, 5873-5887 (2013).
Riechers, Birte, Wittbracht, Frank, Hütten, Andreas, and Koop, Thomas. “The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty”. Physical Chemistry Chemical Physics 15.16 (2013): 5873-5887.

23 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Direct electrochemical generation of supercooled sulfur microdroplets well below their melting temperature.
Liu N, Zhou G, Yang A, Yu X, Shi F, Sun J, Zhang J, Liu B, Wu CL, Tao X, Sun Y, Cui Y, Chu S., Proc Natl Acad Sci U S A 116(3), 2019
PMID: 30602455
Aescin-Cholesterol Complexes in DMPC Model Membranes: A DSC and Temperature-Dependent Scattering Study.
Sreij R, Dargel C, Schweins R, Prévost S, Dattani R, Hellweg T., Sci Rep 9(1), 2019
PMID: 30944386
Drivers of apoplastic freezing in gymnosperm and angiosperm branches.
Lintunen A, Mayr S, Salmon Y, Cochard H, Hölttä T., Ecol Evol 8(1), 2018
PMID: 29321875
Shrinking of Rapidly Evaporating Water Microdroplets Reveals their Extreme Supercooling.
Goy C, Potenza MAC, Dedera S, Tomut M, Guillerm E, Kalinin A, Voss KO, Schottelius A, Petridis N, Prosvetov A, Tejeda G, Fernández JM, Trautmann C, Caupin F, Glasmacher U, Grisenti RE., Phys Rev Lett 120(1), 2018
PMID: 29350942
The study of atmospheric ice-nucleating particles via microfluidically generated droplets.
Tarn MD, Sikora SNF, Porter GCE, O'Sullivan D, Adams M, Whale TF, Harrison AD, Vergara-Temprado J, Wilson TW, Shim JU, Murray BJ., Microfluid Nanofluidics 22(5), 2018
PMID: 29720926
Boreal pollen contain ice-nucleating as well as ice-binding 'antifreeze' polysaccharides.
Dreischmeier K, Budke C, Wiehemeier L, Kottke T, Koop T., Sci Rep 7(), 2017
PMID: 28157236
Controlled ice nucleation using freeze-dried Pseudomonas syringae encapsulated in alginate beads.
Weng L, Tessier SN, Swei A, Stott SL, Toner M., Cryobiology 75(), 2017
PMID: 28315320
Progress of crystallization in microfluidic devices.
Shi HH, Xiao Y, Ferguson S, Huang X, Wang N, Hao HX., Lab Chip 17(13), 2017
PMID: 28585942
Perspective: Surface freezing in water: A nexus of experiments and simulations.
Haji-Akbari A, Debenedetti PG., J Chem Phys 147(6), 2017
PMID: 28810776
Tuning Ice Nucleation with Supercharged Polypeptides.
Yang H, Ma C, Li K, Liu K, Loznik M, Teeuwen R, van Hest JC, Zhou X, Herrmann A, Wang J., Adv Mater 28(25), 2016
PMID: 27119590
Water: A Tale of Two Liquids.
Gallo P, Amann-Winkel K, Angell CA, Anisimov MA, Caupin F, Chakravarty C, Lascaris E, Loerting T, Panagiotopoulos AZ, Russo J, Sellberg JA, Stanley HE, Tanaka H, Vega C, Xu L, Pettersson LG., Chem Rev 116(13), 2016
PMID: 27380438
Bacterial Ice Nucleation in Monodisperse D2O and H2O-in-Oil Emulsions.
Weng L, Tessier SN, Smith K, Edd JF, Stott SL, Toner M., Langmuir 32(36), 2016
PMID: 27495973
Overview: Nucleation of clathrate hydrates.
Warrier P, Khan MN, Srivastava V, Maupin CM, Koh CA., J Chem Phys 145(21), 2016
PMID: 28799342
Does the emulsification procedure influence freezing and thawing of aqueous droplets?
Hauptmann A, Handle KF, Baloh P, Grothe H, Loerting T., J Chem Phys 145(21), 2016
PMID: 28799359
On the time required to freeze water.
Espinosa JR, Navarro C, Sanz E, Valeriani C, Vega C., J Chem Phys 145(21), 2016
PMID: 28799362
Classical nucleation theory of homogeneous freezing of water: thermodynamic and kinetic parameters.
Ickes L, Welti A, Hoose C, Lohmann U., Phys Chem Chem Phys 17(8), 2015
PMID: 25627933
Sensitivity of liquid clouds to homogenous freezing parameterizations.
Herbert RJ, Murray BJ, Dobbie SJ, Koop T., Geophys Res Lett 42(5), 2015
PMID: 26074652
Anomalous Behavior of the Homogeneous Ice Nucleation Rate in "No-Man's Land".
Laksmono H, McQueen TA, Sellberg JA, Loh ND, Huang C, Schlesinger D, Sierra RG, Hampton CY, Nordlund D, Beye M, Martin AV, Barty A, Seibert MM, Messerschmidt M, Williams GJ, Boutet S, Amann-Winkel K, Loerting T, Pettersson LG, Bogan MJ, Nilsson A., J Phys Chem Lett 6(14), 2015
PMID: 26207172
Ice Nucleation Properties of Oxidized Carbon Nanomaterials.
Whale TF, Rosillo-Lopez M, Murray BJ, Salzmann CG., J Phys Chem Lett 6(15), 2015
PMID: 26267196
Competition between ices Ih and Ic in homogeneous water freezing.
Zaragoza A, Conde MM, Espinosa JR, Valeriani C, Vega C, Sanz E., J Chem Phys 143(13), 2015
PMID: 26450320

85 References

Daten bereitgestellt von Europe PubMed Central.


Bartels-Rausch, Rev. Mod. Phys. 84(), 2012
Predicting global atmospheric ice nuclei distributions and their impacts on climate.
DeMott PJ, Prenni AJ, Liu X, Kreidenweis SM, Petters MD, Twohy CH, Richardson MS, Eidhammer T, Rogers DC., Proc. Natl. Acad. Sci. U.S.A. 107(25), 2010
PMID: 20534566
Water activity as the determinant for homogeneous ice nucleation in aqueous solutions
Koop T, Luo B, Tsias A, Peter T., Nature 406(6796), 2000
PMID: 10949298

Möhler, Biogeosciences 4(), 2007
Freezing injury: the special case of the sperm cell.
John Morris G, Acton E, Murray BJ, Fonseca F., Cryobiology 64(2), 2011
PMID: 22197768
Ice nucleation and antinucleation in nature.
Zachariassen KE, Kristiansen E., Cryobiology 41(4), 2000
PMID: 11222024

Roberts, AIChE J. 48(), 2002
Colloidal aspects of ice cream--a review.
Goff HD., Int. Dairy J. 7(6/7), 1997
PMID: IND21241614

Li, J. Food Eng. 54(), 2002
Small-scale cloud processes and climate.
Baker MB, Peter T., Nature 451(7176), 2008
PMID: 18202649

Pruppacher, J. Atmos. Sci. 52(), 1995

Cantrell, Bull. Am. Meteorol. Soc. 86(), 2005
Atmosphere. When dry air is too humid.
Peter T, Marcolli C, Spichtinger P, Corti T, Baker MB, Koop T., Science 314(5804), 2006
PMID: 17138887

Zobrist, Atmos. Chem. Phys. 8(), 2008

Murray, Atmos. Chem. Phys. 8(), 2008

Kärcher, Atmos. Chem. Phys. 5(), 2005

Koop, Z. Phys. Chem. 218(), 2004

Iannone, Atmos. Chem. Phys. 11(), 2011

Knopf, Nat. Geosci. 4(), 2011

Möhler, Biogeosciences 5(), 2008
Ice nucleation by particles immersed in supercooled cloud droplets.
Murray BJ, O'Sullivan D, Atkinson JD, Webb ME., Chem Soc Rev 41(19), 2012
PMID: 22932664
Ice nucleation by alcohols arranged in monolayers at the surface of water drops.
Gavish M, Popovitz-Biro R, Lahav M, Leiserowitz L., Science 250(4983), 1990
PMID: 17746923

Lüönd, J. Geophys. Res., [Atmos.] 115(), 2010

Murray, Atmos. Chem. Phys. 11(), 2011

Niedermeier, Atmos. Chem. Phys. 10(), 2010

Heymsfield, J. Atmos. Sci. 62(), 2005

Djikaev, J. Phys. Chem. A 106(), 2002
Surface crystallization of supercooled water in clouds.
Tabazadeh A, Djikaev YS, Reiss H., Proc. Natl. Acad. Sci. U.S.A. 99(25), 2002
PMID: 12456877

Kuhn, Atmos. Chem. Phys. 11(), 2011
Homogeneous freezing of water starts in the subsurface.
Vrbka L, Jungwirth P., J Phys Chem B 110(37), 2006
PMID: 16970424

Duft, Atmos. Chem. Phys. 4(), 2004

Benz, J. Photochem. Photobiol., A 176(), 2005

Earle, Atmos. Chem. Phys. 10(), 2010
Rates of homogeneous ice nucleation in levitated H2O and D2O droplets.
Stockel P, Weidinger IM, Baumgartel H, Leisner T., J Phys Chem A 109(11), 2005
PMID: 16833556
A microfluidic apparatus for the study of ice nucleation in supercooled water drops.
Stan CA, Schneider GF, Shevkoplyas SS, Hashimoto M, Ibanescu M, Wiley BJ, Whitesides GM., Lab Chip 9(16), 2009
PMID: 19636459
Kinetics of the homogeneous freezing of water.
Murray BJ, Broadley SL, Wilson TW, Bull SJ, Wills RH, Christenson HK, Murray EJ., Phys Chem Chem Phys 12(35), 2010
PMID: 20577704
Freezing water in no-man's land.
Manka A, Pathak H, Tanimura S, Wolk J, Strey R, Wyslouzil BE., Phys Chem Chem Phys 14(13), 2012
PMID: 22354018
On the role of surface charges for homogeneous freezing of supercooled water microdroplets.
Rzesanke D, Nadolny J, Duft D, Muller R, Kiselev A, Leisner T., Phys Chem Chem Phys 14(26), 2012
PMID: 22294097

Wood, Rev. Sci. Instrum. 73(), 2002

Hoyle, Atmos. Chem. Phys. 11(), 2011

Sarge, Thermochim. Acta 361(), 2000

Sarge, Thermochim. Acta 247(), 1994

Della, Pure Appl. Chem. 78(), 2006

Charsley, J. Therm. Anal. 40(), 1993

Charsley, Thermochim. Acta 446(), 2006

Djikaev, J. Phys. Chem. A 108(), 2004
The formation of cubic ice under conditions relevant to Earth's atmosphere.
Murray BJ, Knopf DA, Bertram AK., Nature 434(7030), 2005
PMID: 15758996
Structure of ice crystallized from supercooled water.
Malkin TL, Murray BJ, Brukhno AV, Anwar J, Salzmann CG., Proc. Natl. Acad. Sci. U.S.A. 109(4), 2012
PMID: 22232652
Homogeneous ice nucleation from supercooled water.
Li T, Donadio D, Russo G, Galli G., Phys Chem Chem Phys 13(44), 2011
PMID: 21989826
Is it cubic? Ice crystallization from deeply supercooled water.
Moore EB, Molinero V., Phys Chem Chem Phys 13(44), 2011
PMID: 22009135

Brukhno, J. Phys.: Condens. Matter 20(), 2008

Koop, J. Phys. Chem. A 101(), 1997
Liquid-like relaxation in hyperquenched water at < or = 140 K.
Kohl I, Bachmann L, Hallbrucker A, Mayer E, Loerting T., Phys Chem Chem Phys 7(17), 2005
PMID: 16240034
Crystallization kinetics and excess free energy of H2O and D2O nanoscale films of amorphous solid water.
Smith RS, Matthiesen J, Knox J, Kay BD., J Phys Chem A 115(23), 2011
PMID: 21218834
Thermal and nonthermal physiochemical processes in nanoscale films of amorphous solid water.
Smith RS, Petrik NG, Kimmel GA, Kay BD., Acc. Chem. Res. 45(1), 2011
PMID: 21627126

Mishima, Nature 396(), 1998

Smith, Nature 398(), 1999

Alpert, Atmos. Chem. Phys. 11(), 2011
Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM., Lab Chip 6(3), 2006
PMID: 16511628

Christopher, J. Phys. D: Appl. Phys. 40(), 2007

Friend, Biomicrofluidics 4(), 2010
Nucleation and solidification in static arrays of monodisperse drops.
Edd JF, Humphry KJ, Irimia D, Weitz DA, Toner M., Lab Chip 9(13), 2009
PMID: 19532960
Microdroplets: a sea of applications?
Huebner A, Sharma S, Srisa-Art M, Hollfelder F, Edel JB, Demello AJ., Lab Chip 8(8), 2008
PMID: 18651063
Surfactants in droplet-based microfluidics.
Baret JC., Lab Chip 12(3), 2011
PMID: 22011791

van, J. Phys.: Condens. Matter 22(), 2010

Chang, J. Phys. Chem. A 103(), 1999

Marcolli, Atmos. Chem. Phys. 7(), 2007

Zobrist, J. Phys. Chem. C 111(), 2007

Krämer, J. Chem. Phys. 111(), 1999

Archer, J. Phys. Chem. B 104(), 2000

Bhattacharya, J. Microelectromech. Syst. 14(), 2005
Poly(oxyethylene) based surface coatings for poly(dimethylsiloxane) microchannels.
Hellmich W, Regtmeier J, Duong TT, Ros R, Anselmetti D, Ros A., Langmuir 21(16), 2005
PMID: 16042494

Sabourin, J. Micromech. Microeng. 19(), 2009

Stephenson, J. Am. Chem. Soc. 66(), 1944

Ruehrwein, J. Am. Chem. Soc. 65(), 1943

Chang, J. Phys. Chem. 64(), 1960

Speedy, J. Phys. Chem. 91(), 1987

Demott, J. Atmos. Sci. 47(), 1990

Ladino, J. Geophys. Res., [Atmos.] 116(), 2011
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23486888
PubMed | Europe PMC

Suchen in

Google Scholar