Analysis of Flow Cytometry Data by Matrix Relevance Learning Vector Quantization
Biehl M, Bunte K, Schneider P (2013)
Plos One 8(3): e59401.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Biehl, Michael;
Bunte, KerstinUniBi;
Schneider, Petra
Abstract / Bemerkung
Flow cytometry is a widely used technique for the analysis of cell populations in the study and diagnosis of human diseases. It yields large amounts of high-dimensional data, the analysis of which would clearly benefit from efficient computational approaches aiming at automated diagnosis and decision support. This article presents our analysis of flow cytometry data in the framework of the DREAM6/FlowCAP2 Molecular Classification of Acute Myeloid Leukemia (AML) Challenge, 2011. In the challenge, example data was provided for a set of 179 subjects, comprising healthy donors and 23 cases of AML. The participants were asked to provide predictions with respect to the condition of 180 patients in a test set. We extracted feature vectors from the data in terms of single marker statistics, including characteristic moments, median and interquartile range of the observed values. Subsequently, we applied Generalized Matrix Relevance Learning Vector Quantization (GMLVQ), a machine learning technique which extends standard LVQ by an adaptive distance measure. Our method achieved the best possible performance with respect to the diagnoses of test set patients. The extraction of features from the flow cytometry data is outlined in detail, the machine learning approach is discussed and classification results are presented. In addition, we illustrate how GMLVQ can provide deeper insight into the problem by allowing to infer the relevance of specific markers and features for the diagnosis.
Erscheinungsjahr
2013
Zeitschriftentitel
Plos One
Band
8
Ausgabe
3
Art.-Nr.
e59401
ISSN
1932-6203
eISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2578607
Zitieren
Biehl M, Bunte K, Schneider P. Analysis of Flow Cytometry Data by Matrix Relevance Learning Vector Quantization. Plos One. 2013;8(3): e59401.
Biehl, M., Bunte, K., & Schneider, P. (2013). Analysis of Flow Cytometry Data by Matrix Relevance Learning Vector Quantization. Plos One, 8(3), e59401. doi:10.1371/journal.pone.0059401
Biehl, Michael, Bunte, Kerstin, and Schneider, Petra. 2013. “Analysis of Flow Cytometry Data by Matrix Relevance Learning Vector Quantization”. Plos One 8 (3): e59401.
Biehl, M., Bunte, K., and Schneider, P. (2013). Analysis of Flow Cytometry Data by Matrix Relevance Learning Vector Quantization. Plos One 8:e59401.
Biehl, M., Bunte, K., & Schneider, P., 2013. Analysis of Flow Cytometry Data by Matrix Relevance Learning Vector Quantization. Plos One, 8(3): e59401.
M. Biehl, K. Bunte, and P. Schneider, “Analysis of Flow Cytometry Data by Matrix Relevance Learning Vector Quantization”, Plos One, vol. 8, 2013, : e59401.
Biehl, M., Bunte, K., Schneider, P.: Analysis of Flow Cytometry Data by Matrix Relevance Learning Vector Quantization. Plos One. 8, : e59401 (2013).
Biehl, Michael, Bunte, Kerstin, and Schneider, Petra. “Analysis of Flow Cytometry Data by Matrix Relevance Learning Vector Quantization”. Plos One 8.3 (2013): e59401.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
4 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Prototype-based models in machine learning.
Biehl M, Hammer B, Villmann T., Wiley Interdiscip Rev Cogn Sci 7(2), 2016
PMID: 26800334
Biehl M, Hammer B, Villmann T., Wiley Interdiscip Rev Cogn Sci 7(2), 2016
PMID: 26800334
Immunophenotype Discovery, Hierarchical Organization, and Template-Based Classification of Flow Cytometry Samples.
Azad A, Rajwa B, Pothen A., Front Oncol 6(), 2016
PMID: 27630823
Azad A, Rajwa B, Pothen A., Front Oncol 6(), 2016
PMID: 27630823
Studying the human immunome: the complexity of comprehensive leukocyte immunophenotyping.
Biancotto A, McCoy JP., Curr Top Microbiol Immunol 377(), 2014
PMID: 23975032
Biancotto A, McCoy JP., Curr Top Microbiol Immunol 377(), 2014
PMID: 23975032
Leukemia prediction using sparse logistic regression.
Manninen T, Huttunen H, Ruusuvuori P, Nykter M., PLoS One 8(8), 2013
PMID: 24023658
Manninen T, Huttunen H, Ruusuvuori P, Nykter M., PLoS One 8(8), 2013
PMID: 24023658
32 References
Daten bereitgestellt von Europe PubMed Central.
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Towards a rigorous assessment of systems biology models: the DREAM3 challenges.
Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X, Clarke ND, Altan-Bonnet G, Stolovitzky G., PLoS ONE 5(2), 2010
PMID: 20186320
Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X, Clarke ND, Altan-Bonnet G, Stolovitzky G., PLoS ONE 5(2), 2010
PMID: 20186320
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Adaptive relevance matrices in learning vector quantization.
Schneider P, Biehl M, Hammer B., Neural Comput 21(12), 2009
PMID: 19764875
Schneider P, Biehl M, Hammer B., Neural Comput 21(12), 2009
PMID: 19764875
Regularization in matrix relevance learning.
Schneider P, Bunte K, Stiekema H, Hammer B, Villmann T, Biehl M., IEEE Trans Neural Netw 21(5), 2010
PMID: 20236882
Schneider P, Bunte K, Stiekema H, Hammer B, Villmann T, Biehl M., IEEE Trans Neural Netw 21(5), 2010
PMID: 20236882
Limited Rank Matrix Learning, discriminative dimension reduction and visualization.
Bunte K, Schneider P, Hammer B, Schleif FM, Villmann T, Biehl M., Neural Netw 26(), 2011
PMID: 22041220
Bunte K, Schneider P, Hammer B, Schleif FM, Villmann T, Biehl M., Neural Netw 26(), 2011
PMID: 22041220
AUTHOR UNKNOWN, 0
Dynamics and generalization ability of LVQ algorithms
AUTHOR UNKNOWN, 2007
AUTHOR UNKNOWN, 2007
AUTHOR UNKNOWN, 0
Divergence based classification in Learning Vector Quantization
AUTHOR UNKNOWN, 2011
AUTHOR UNKNOWN, 2011
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Generalized relevance learning vector quantization.
Hammer B, Villmann T., Neural Netw 15(8-9), 2002
PMID: 12416694
Hammer B, Villmann T., Neural Netw 15(8-9), 2002
PMID: 12416694
AUTHOR UNKNOWN, 0
An introduction to ROC analysis
AUTHOR UNKNOWN, 2006
AUTHOR UNKNOWN, 2006
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Jstacs – a Java framework for statistical analysis and classification of biological sequences
AUTHOR UNKNOWN, 2012
AUTHOR UNKNOWN, 2012
AUTHOR UNKNOWN, 0
Urine steroid metabolomics as a biomarker tool for detecting malignancy in adrenal tumors.
Arlt W, Biehl M, Taylor AE, Hahner S, Libe R, Hughes BA, Schneider P, Smith DJ, Stiekema H, Krone N, Porfiri E, Opocher G, Bertherat J, Mantero F, Allolio B, Terzolo M, Nightingale P, Shackleton CH, Bertagna X, Fassnacht M, Stewart PM., J. Clin. Endocrinol. Metab. 96(12), 2011
PMID: 21917861
Arlt W, Biehl M, Taylor AE, Hahner S, Libe R, Hughes BA, Schneider P, Smith DJ, Stiekema H, Krone N, Porfiri E, Opocher G, Bertherat J, Mantero F, Allolio B, Terzolo M, Nightingale P, Shackleton CH, Bertagna X, Fassnacht M, Stewart PM., J. Clin. Endocrinol. Metab. 96(12), 2011
PMID: 21917861
AUTHOR UNKNOWN, 0
CD56 antigenic expression in acute myeloid leukemia identifies patients with poor clinical prognosis.
Raspadori D, Damiani D, Lenoci M, Rondelli D, Testoni N, Nardi G, Sestigiani C, Mariotti C, Birtolo S, Tozzi M, Lauria F., Leukemia 15(8), 2001
PMID: 11480556
Raspadori D, Damiani D, Lenoci M, Rondelli D, Testoni N, Nardi G, Sestigiani C, Mariotti C, Birtolo S, Tozzi M, Lauria F., Leukemia 15(8), 2001
PMID: 11480556
High percentage of CD34-positive cells in autologous AML peripheral blood stem cell products reflects inadequate in vivo purging and low chemotherapeutic toxicity in a subgroup of patients with poor clinical outcome.
Feller N, Schuurhuis GJ, van der Pol MA, Westra G, Weijers GW, van Stijn A, Huijgens PC, Ossenkoppele GJ., Leukemia 17(1), 2003
PMID: 12529662
Feller N, Schuurhuis GJ, van der Pol MA, Westra G, Weijers GW, van Stijn A, Huijgens PC, Ossenkoppele GJ., Leukemia 17(1), 2003
PMID: 12529662
Positive and negative predictive values of HLA-DR and CD34 in the diagnosis of acute promyelocytic leukemia and other types of acute myeloid leukemia with recurrent chromosomal translocations.
Promsuwicha O, Auewarakul CU., Asian Pac. J. Allergy Immunol. 27(4), 2009
PMID: 20232575
Promsuwicha O, Auewarakul CU., Asian Pac. J. Allergy Immunol. 27(4), 2009
PMID: 20232575
AUTHOR UNKNOWN, 0
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 23527184
PubMed | Europe PMC
Suchen in