Analysis of Flow Cytometry Data by Matrix Relevance Learning Vector Quantization

Biehl M, Bunte K, Schneider P (2013)
Plos One 8(3): e59401.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Biehl, Michael; Bunte, KerstinUniBi; Schneider, Petra
Abstract / Bemerkung
Flow cytometry is a widely used technique for the analysis of cell populations in the study and diagnosis of human diseases. It yields large amounts of high-dimensional data, the analysis of which would clearly benefit from efficient computational approaches aiming at automated diagnosis and decision support. This article presents our analysis of flow cytometry data in the framework of the DREAM6/FlowCAP2 Molecular Classification of Acute Myeloid Leukemia (AML) Challenge, 2011. In the challenge, example data was provided for a set of 179 subjects, comprising healthy donors and 23 cases of AML. The participants were asked to provide predictions with respect to the condition of 180 patients in a test set. We extracted feature vectors from the data in terms of single marker statistics, including characteristic moments, median and interquartile range of the observed values. Subsequently, we applied Generalized Matrix Relevance Learning Vector Quantization (GMLVQ), a machine learning technique which extends standard LVQ by an adaptive distance measure. Our method achieved the best possible performance with respect to the diagnoses of test set patients. The extraction of features from the flow cytometry data is outlined in detail, the machine learning approach is discussed and classification results are presented. In addition, we illustrate how GMLVQ can provide deeper insight into the problem by allowing to infer the relevance of specific markers and features for the diagnosis.
Erscheinungsjahr
2013
Zeitschriftentitel
Plos One
Band
8
Ausgabe
3
Art.-Nr.
e59401
ISSN
1932-6203
eISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2578607

Zitieren

Biehl M, Bunte K, Schneider P. Analysis of Flow Cytometry Data by Matrix Relevance Learning Vector Quantization. Plos One. 2013;8(3): e59401.
Biehl, M., Bunte, K., & Schneider, P. (2013). Analysis of Flow Cytometry Data by Matrix Relevance Learning Vector Quantization. Plos One, 8(3), e59401. doi:10.1371/journal.pone.0059401
Biehl, Michael, Bunte, Kerstin, and Schneider, Petra. 2013. “Analysis of Flow Cytometry Data by Matrix Relevance Learning Vector Quantization”. Plos One 8 (3): e59401.
Biehl, M., Bunte, K., and Schneider, P. (2013). Analysis of Flow Cytometry Data by Matrix Relevance Learning Vector Quantization. Plos One 8:e59401.
Biehl, M., Bunte, K., & Schneider, P., 2013. Analysis of Flow Cytometry Data by Matrix Relevance Learning Vector Quantization. Plos One, 8(3): e59401.
M. Biehl, K. Bunte, and P. Schneider, “Analysis of Flow Cytometry Data by Matrix Relevance Learning Vector Quantization”, Plos One, vol. 8, 2013, : e59401.
Biehl, M., Bunte, K., Schneider, P.: Analysis of Flow Cytometry Data by Matrix Relevance Learning Vector Quantization. Plos One. 8, : e59401 (2013).
Biehl, Michael, Bunte, Kerstin, and Schneider, Petra. “Analysis of Flow Cytometry Data by Matrix Relevance Learning Vector Quantization”. Plos One 8.3 (2013): e59401.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Prototype-based models in machine learning.
Biehl M, Hammer B, Villmann T., Wiley Interdiscip Rev Cogn Sci 7(2), 2016
PMID: 26800334
Studying the human immunome: the complexity of comprehensive leukocyte immunophenotyping.
Biancotto A, McCoy JP., Curr Top Microbiol Immunol 377(), 2014
PMID: 23975032
Leukemia prediction using sparse logistic regression.
Manninen T, Huttunen H, Ruusuvuori P, Nykter M., PLoS One 8(8), 2013
PMID: 24023658

32 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Towards a rigorous assessment of systems biology models: the DREAM3 challenges.
Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X, Clarke ND, Altan-Bonnet G, Stolovitzky G., PLoS ONE 5(2), 2010
PMID: 20186320

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Adaptive relevance matrices in learning vector quantization.
Schneider P, Biehl M, Hammer B., Neural Comput 21(12), 2009
PMID: 19764875
Regularization in matrix relevance learning.
Schneider P, Bunte K, Stiekema H, Hammer B, Villmann T, Biehl M., IEEE Trans Neural Netw 21(5), 2010
PMID: 20236882
Limited Rank Matrix Learning, discriminative dimension reduction and visualization.
Bunte K, Schneider P, Hammer B, Schleif FM, Villmann T, Biehl M., Neural Netw 26(), 2011
PMID: 22041220

AUTHOR UNKNOWN, 0
Dynamics and generalization ability of LVQ algorithms
AUTHOR UNKNOWN, 2007

AUTHOR UNKNOWN, 0
Divergence based classification in Learning Vector Quantization
AUTHOR UNKNOWN, 2011

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Generalized relevance learning vector quantization.
Hammer B, Villmann T., Neural Netw 15(8-9), 2002
PMID: 12416694

AUTHOR UNKNOWN, 0
An introduction to ROC analysis
AUTHOR UNKNOWN, 2006

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Jstacs – a Java framework for statistical analysis and classification of biological sequences
AUTHOR UNKNOWN, 2012

AUTHOR UNKNOWN, 0
Urine steroid metabolomics as a biomarker tool for detecting malignancy in adrenal tumors.
Arlt W, Biehl M, Taylor AE, Hahner S, Libe R, Hughes BA, Schneider P, Smith DJ, Stiekema H, Krone N, Porfiri E, Opocher G, Bertherat J, Mantero F, Allolio B, Terzolo M, Nightingale P, Shackleton CH, Bertagna X, Fassnacht M, Stewart PM., J. Clin. Endocrinol. Metab. 96(12), 2011
PMID: 21917861

AUTHOR UNKNOWN, 0
CD56 antigenic expression in acute myeloid leukemia identifies patients with poor clinical prognosis.
Raspadori D, Damiani D, Lenoci M, Rondelli D, Testoni N, Nardi G, Sestigiani C, Mariotti C, Birtolo S, Tozzi M, Lauria F., Leukemia 15(8), 2001
PMID: 11480556

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23527184
PubMed | Europe PMC

Suchen in

Google Scholar