Modelling the hierarchical structure in datasets with very small clusters: a simulation study to explore the effect of the proportion of clusters when the outcome is continuous

Sauzet O, Wright KC, Marston L, Brocklehurst P, Peacock JL (2013)
Statistics In Medicine 32(8): 1429-1438.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Sauzet, OdileUniBi; Wright, K. C.; Marston, L.; Brocklehurst, P.; Peacock, J. L.
Abstract / Bemerkung
In cluster-randomised trials, the problem of non-independence within clusters is well known, and appropriate statistical analysis documented. Clusters typically seen in cluster trials are large in size and few in number, whereas datasets of preterm infants incorporate clusters of size two (twins), size three (triplets) and so on, with the majority of infants being in clusters' of size one. In such situations, it is unclear whether adjustment for clustering is needed or even possible. In this paper, we compared analyses allowing for clustering (linear mixed model) with analyses ignoring clustering (linear regression). Through simulations based on two real datasets, we explored estimation bias in predictors of a continuous outcome in different size datasets typical of preterm samples, with varying percentages of twins. Overall, the biases for estimated coefficients were similar for linear regression and mixed models, but the standard errors were consistently much less well estimated when using a linear model. Non-convergence was rare but was observed in approximately 5% of mixed models for samples below 200 and percentage of twins 2% or less. We conclude that in datasets with small clusters, mixed models should be the method of choice irrespective of the percentage of twins. If the mixed model does not converge, a linear regression can be fitted, but standard error will be underestimated, and so type I error may be inflated. Copyright (c) 2012 John Wiley & Sons, Ltd.
Stichworte
mixed model; non-independent data; small clusters; linear regression; simulations
Erscheinungsjahr
2013
Zeitschriftentitel
Statistics In Medicine
Band
32
Ausgabe
8
Seite(n)
1429-1438
ISSN
0277-6715
Page URI
https://pub.uni-bielefeld.de/record/2578314

Zitieren

Sauzet O, Wright KC, Marston L, Brocklehurst P, Peacock JL. Modelling the hierarchical structure in datasets with very small clusters: a simulation study to explore the effect of the proportion of clusters when the outcome is continuous. Statistics In Medicine. 2013;32(8):1429-1438.
Sauzet, O., Wright, K. C., Marston, L., Brocklehurst, P., & Peacock, J. L. (2013). Modelling the hierarchical structure in datasets with very small clusters: a simulation study to explore the effect of the proportion of clusters when the outcome is continuous. Statistics In Medicine, 32(8), 1429-1438. doi:10.1002/sim.5638
Sauzet, Odile, Wright, K. C., Marston, L., Brocklehurst, P., and Peacock, J. L. 2013. “Modelling the hierarchical structure in datasets with very small clusters: a simulation study to explore the effect of the proportion of clusters when the outcome is continuous”. Statistics In Medicine 32 (8): 1429-1438.
Sauzet, O., Wright, K. C., Marston, L., Brocklehurst, P., and Peacock, J. L. (2013). Modelling the hierarchical structure in datasets with very small clusters: a simulation study to explore the effect of the proportion of clusters when the outcome is continuous. Statistics In Medicine 32, 1429-1438.
Sauzet, O., et al., 2013. Modelling the hierarchical structure in datasets with very small clusters: a simulation study to explore the effect of the proportion of clusters when the outcome is continuous. Statistics In Medicine, 32(8), p 1429-1438.
O. Sauzet, et al., “Modelling the hierarchical structure in datasets with very small clusters: a simulation study to explore the effect of the proportion of clusters when the outcome is continuous”, Statistics In Medicine, vol. 32, 2013, pp. 1429-1438.
Sauzet, O., Wright, K.C., Marston, L., Brocklehurst, P., Peacock, J.L.: Modelling the hierarchical structure in datasets with very small clusters: a simulation study to explore the effect of the proportion of clusters when the outcome is continuous. Statistics In Medicine. 32, 1429-1438 (2013).
Sauzet, Odile, Wright, K. C., Marston, L., Brocklehurst, P., and Peacock, J. L. “Modelling the hierarchical structure in datasets with very small clusters: a simulation study to explore the effect of the proportion of clusters when the outcome is continuous”. Statistics In Medicine 32.8 (2013): 1429-1438.

13 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Systematic review and simulation study of ignoring clustered data in surgical trials.
Dell-Kuster S, Droeser RA, Schäfer J, Gloy V, Ewald H, Schandelmaier S, Hemkens LG, Bucher HC, Young J, Rosenthal R., Br J Surg 105(3), 2018
PMID: 29405280
Accounting for twin births in sample size calculations for randomised trials.
Yelland LN, Sullivan TR, Collins CT, Price DJ, McPhee AJ, Lee KJ., Paediatr Perinat Epidemiol 32(4), 2018
PMID: 29727020
Correlation between neonatal outcomes of twins depends on the outcome: secondary analysis of twelve randomised controlled trials.
Yelland LN, Schuit E, Zamora J, Middleton PF, Lim AC, Nassar AH, Rode L, Serra V, Thom EA, Vayssière C, Mol B, Gates S., BJOG 125(11), 2018
PMID: 29790271
Effect of dexamethasone exposure on the neonatal unit on the school age lung function of children born very prematurely.
Harris C, Crichton S, Zivanovic S, Lunt A, Calvert S, Marlow N, Peacock JL, Greenough A., PLoS One 13(7), 2018
PMID: 29985964
The SafeBoosC II randomized trial: treatment guided by near-infrared spectroscopy reduces cerebral hypoxia without changing early biomarkers of brain injury.
Plomgaard AM, van Oeveren W, Petersen TH, Alderliesten T, Austin T, van Bel F, Benders M, Claris O, Dempsey E, Franz A, Fumagalli M, Gluud C, Hagmann C, Hyttel-Sorensen S, Lemmers P, Pellicer A, Pichler G, Winkel P, Greisen G., Pediatr Res 79(4), 2016
PMID: 26679155
A distributional approach to obtain adjusted comparisons of proportions of a population at risk.
Sauzet O, Breckenkamp J, Borde T, Brenne S, David M, Razum O, Peacock JL., Emerg Themes Epidemiol 13(), 2016
PMID: 27279891
Accounting for multiple births in randomised trials: a systematic review.
Yelland LN, Sullivan TR, Makrides M., Arch Dis Child Fetal Neonatal Ed 100(2), 2015
PMID: 25389142
Analysis of Randomised Trials Including Multiple Births When Birth Size Is Informative.
Yelland LN, Sullivan TR, Pavlou M, Seaman SR., Paediatr Perinat Epidemiol 29(6), 2015
PMID: 26332368
Late outcomes of a randomized trial of high-frequency oscillation in neonates.
Zivanovic S, Peacock J, Alcazar-Paris M, Lo JW, Lunt A, Marlow N, Calvert S, Greenough A., N Engl J Med 370(12), 2014
PMID: 24645944
A phase II randomized clinical trial on cerebral near-infrared spectroscopy plus a treatment guideline versus treatment as usual for extremely preterm infants during the first three days of life (SafeBoosC): study protocol for a randomized controlled trial.
Hyttel-Sorensen S, Austin T, van Bel F, Benders M, Claris O, Dempsey E, Fumagalli M, Greisen G, Grevstad B, Hagmann C, Hellström-Westas L, Lemmers P, Lindschou J, Naulaers G, van Oeveren W, Pellicer A, Pichler G, Roll C, Skoog M, Winkel P, Wolf M, Gluud C., Trials 14(), 2013
PMID: 23782447

14 References

Daten bereitgestellt von Europe PubMed Central.

The statistical analysis of data from small groups.
Kenny DA, Mannetti L, Pierro A, Livi S, Kashy DA., J Pers Soc Psychol 83(1), 2002
PMID: 12088122
Analysis of a trial randomised in clusters.
Kerry SM, Bland JM., BMJ 316(7124), 1998
PMID: 9451271
Comparison of methods for analysing cluster randomized trials: an example involving a factorial design.
Peters TJ, Richards SH, Bankhead CR, Ades AE, Sterne JA., Int J Epidemiol 32(5), 2003
PMID: 14559762
High-frequency oscillatory ventilation for the prevention of chronic lung disease of prematurity.
Johnson AH, Peacock JL, Greenough A, Marlow N, Limb ES, Marston L, Calvert SA; United Kingdom Oscillation Study Group., N. Engl. J. Med. 347(9), 2002
PMID: 12200550
A survey of methods for analyzing clustered binary response data
Pendergast, International Statistical Review 64(), 1996
Regression models for twin studies: a critical review.
Carlin JB, Gurrin LC, Sterne JA, Morley R, Dwyer T., Int J Epidemiol 34(5), 2005
PMID: 16087687
Analysis of repeated pregnancy outcomes.
Louis GB, Dukic V, Heagerty PJ, Louis TA, Lynch CD, Ryan LM, Schisterman EF, Trumble A; Pregnancy Modeling Working Group., Stat Methods Med Res 15(2), 2006
PMID: 16615652
Analysis of neonatal clinical trials with twin births.
Shaffer ML, Kunselman AR, Watterberg KL., BMC Med Res Methodol 9(), 2009
PMID: 19245713
Comparing methods of analysing datasets with small clusters: case studies using four paediatric datasets.
Marston L, Peacock JL, Yu K, Brocklehurst P, Calvert SA, Greenough A, Marlow N., Paediatr Perinat Epidemiol 23(4), 2009
PMID: 19523085
Factors affecting vocabulary acquisition at age 2 in children born between 23 and 28 weeks' gestation.
Marston L, Peacock JL, Calvert SA, Greenough A, Marlow N., Dev Med Child Neurol 49(8), 2007
PMID: 17635204
Randomised trial of high frequency oscillatory ventilation or conventional ventilation in babies of gestational age 28 weeks or less: respiratory and neurological outcomes at 2 years.
Marlow N, Greenough A, Peacock JL, Marston L, Limb ES, Johnson AH, Calvert SA., Arch. Dis. Child. Fetal Neonatal Ed. 91(5), 2006
PMID: 16690640
The INIS Study. International Neonatal Immunotherapy Study: non-specific intravenous immunoglobulin therapy for suspected or proven neonatal sepsis: an international, placebo controlled, multicentre randomised trial.
INIS Study Collaborative Group, Brocklehurst P, Brearley S, Haque K, Leslie A, Salt A, Stenson B, Stephenson J, Tarnow-Mordi W., BMC Pregnancy Childbirth 8(), 2008
PMID: 19063731
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23027676
PubMed | Europe PMC

Suchen in

Google Scholar