Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes

Lieu D, Fu J, Chiamvimonvat N, Chan Tung K, McNerney G, Huser T, Keller G, Kong C-W, Li R (2013)
Circulation: Arrhythmia and Electrophysiology 6(1): 191-201.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Lieu, Deborah; Fu, J.; Chiamvimonvat, N.; Chan Tung, K.; McNerney, Gregory; Huser, ThomasUniBi ; Keller, G.; Kong, C.-W.; Li, Ronald
Erscheinungsjahr
2013
Zeitschriftentitel
Circulation: Arrhythmia and Electrophysiology
Band
6
Ausgabe
1
Seite(n)
191-201
ISSN
1941-3149
eISSN
1941-3084
Page URI
https://pub.uni-bielefeld.de/record/2578266

Zitieren

Lieu D, Fu J, Chiamvimonvat N, et al. Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes. Circulation: Arrhythmia and Electrophysiology. 2013;6(1):191-201.
Lieu, D., Fu, J., Chiamvimonvat, N., Chan Tung, K., McNerney, G., Huser, T., Keller, G., et al. (2013). Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes. Circulation: Arrhythmia and Electrophysiology, 6(1), 191-201. doi:10.1161/circep.111.973420
Lieu, Deborah, Fu, J., Chiamvimonvat, N., Chan Tung, K., McNerney, Gregory, Huser, Thomas, Keller, G., Kong, C.-W., and Li, Ronald. 2013. “Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes”. Circulation: Arrhythmia and Electrophysiology 6 (1): 191-201.
Lieu, D., Fu, J., Chiamvimonvat, N., Chan Tung, K., McNerney, G., Huser, T., Keller, G., Kong, C. - W., and Li, R. (2013). Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes. Circulation: Arrhythmia and Electrophysiology 6, 191-201.
Lieu, D., et al., 2013. Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes. Circulation: Arrhythmia and Electrophysiology, 6(1), p 191-201.
D. Lieu, et al., “Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes”, Circulation: Arrhythmia and Electrophysiology, vol. 6, 2013, pp. 191-201.
Lieu, D., Fu, J., Chiamvimonvat, N., Chan Tung, K., McNerney, G., Huser, T., Keller, G., Kong, C.-W., Li, R.: Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes. Circulation: Arrhythmia and Electrophysiology. 6, 191-201 (2013).
Lieu, Deborah, Fu, J., Chiamvimonvat, N., Chan Tung, K., McNerney, Gregory, Huser, Thomas, Keller, G., Kong, C.-W., and Li, Ronald. “Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes”. Circulation: Arrhythmia and Electrophysiology 6.1 (2013): 191-201.

93 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Comparing human iPSC-cardiomyocytes versus HEK293T cells unveils disease-causing effects of Brugada mutation A735V of NaV1.5 sodium channels.
de la Roche J, Angsutararux P, Kempf H, Janan M, Bolesani E, Thiemann S, Wojciechowski D, Coffee M, Franke A, Schwanke K, Leffler A, Luanpitpong S, Issaragrisil S, Fischer M, Zweigerdt R., Sci Rep 9(1), 2019
PMID: 31371804
Human Induced Pluripotent Stem Cell (hiPSC)-Derived Cells to Assess Drug Cardiotoxicity: Opportunities and Problems.
Magdy T, Schuldt AJT, Wu JC, Bernstein D, Burridge PW., Annu Rev Pharmacol Toxicol 58(), 2018
PMID: 28992430
Sodium channel current loss of function in induced pluripotent stem cell-derived cardiomyocytes from a Brugada syndrome patient.
Selga E, Sendfeld F, Martinez-Moreno R, Medine CN, Tura-Ceide O, Wilmut SI, Pérez GJ, Scornik FS, Brugada R, Mills NL., J Mol Cell Cardiol 114(), 2018
PMID: 29024690
Kir2.1 channels set two levels of resting membrane potential with inward rectification.
Chen K, Zuo D, Liu Z, Chen H., Pflugers Arch 470(4), 2018
PMID: 29282531
Bioengineering an electro-mechanically functional miniature ventricular heart chamber from human pluripotent stem cells.
Li RA, Keung W, Cashman TJ, Backeris PC, Johnson BV, Bardot ES, Wong AOT, Chan PKW, Chan CWY, Costa KD., Biomaterials 163(), 2018
PMID: 29459321
Mitochondrial Ca2+ flux modulates spontaneous electrical activity in ventricular cardiomyocytes.
Xie A, Zhou A, Liu H, Shi G, Liu M, Boheler KR, Dudley SC., PLoS One 13(7), 2018
PMID: 30001390
A MicroRNA Perspective on Cardiovascular Development and Diseases: An Update.
Islas JF, Moreno-Cuevas JE., Int J Mol Sci 19(7), 2018
PMID: 30018214
Changing Metabolism in Differentiating Cardiac Progenitor Cells-Can Stem Cells Become Metabolically Flexible Cardiomyocytes?
Malandraki-Miller S, Lopez CA, Al-Siddiqi H, Carr CA., Front Cardiovasc Med 5(), 2018
PMID: 30283788
Highly efficient transfection of human induced pluripotent stem cells using magnetic nanoparticles.
Yamoah MA, Moshref M, Sharma J, Chen WC, Ledford HA, Lee JH, Chavez KS, Wang W, López JE, Lieu DK, Sirish P, Zhang XD., Int J Nanomedicine 13(), 2018
PMID: 30323594
Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis.
Churko JM, Garg P, Treutlein B, Venkatasubramanian M, Wu H, Lee J, Wessells QN, Chen SY, Chen WY, Chetal K, Mantalas G, Neff N, Jabart E, Sharma A, Nolan GP, Salomonis N, Wu JC., Nat Commun 9(1), 2018
PMID: 30464173
Phenotypic assays for analyses of pluripotent stem cell-derived cardiomyocytes.
Pesl M, Pribyl J, Caluori G, Cmiel V, Acimovic I, Jelinkova S, Dvorak P, Starek Z, Skladal P, Rotrekl V., J Mol Recognit 30(6), 2017
PMID: 27995655
Evaluation of Batch Variations in Induced Pluripotent Stem Cell-Derived Human Cardiomyocytes from 2 Major Suppliers.
Huo J, Kamalakar A, Yang X, Word B, Stockbridge N, Lyn-Cook B, Pang L., Toxicol Sci 156(1), 2017
PMID: 28031415
Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system.
Zhu H, Scharnhorst KS, Stieg AZ, Gimzewski JK, Minami I, Nakatsuji N, Nakano H, Nakano A., Sci Rep 7(), 2017
PMID: 28266620
Induced pluripotent stem-cell-derived cardiomyocytes: cardiac applications, opportunities, and challenges.
Moreau A, Boutjdir M, Chahine M., Can J Physiol Pharmacol 95(10), 2017
PMID: 28350968
Naturally Engineered Maturation of Cardiomyocytes.
Scuderi GJ, Butcher J., Front Cell Dev Biol 5(), 2017
PMID: 28529939
Electrophysiological Analysis of human Pluripotent Stem Cell-derived Cardiomyocytes (hPSC-CMs) Using Multi-electrode Arrays (MEAs).
Sala L, Ward-van Oostwaard D, Tertoolen LGJ, Mummery CL, Bellin M., J Vis Exp (123), 2017
PMID: 28570546
Overexpression of KCNJ2 in induced pluripotent stem cell-derived cardiomyocytes for the assessment of QT-prolonging drugs.
Li M, Kanda Y, Ashihara T, Sasano T, Nakai Y, Kodama M, Hayashi E, Sekino Y, Furukawa T, Kurokawa J., J Pharmacol Sci 134(2), 2017
PMID: 28615142
Human heart disease: lessons from human pluripotent stem cell-derived cardiomyocytes.
Giacomelli E, Mummery CL, Bellin M., Cell Mol Life Sci 74(20), 2017
PMID: 28573431
Kir2.1 and K2P1 channels reconstitute two levels of resting membrane potential in cardiomyocytes.
Zuo D, Chen K, Zhou M, Liu Z, Chen H., J Physiol 595(15), 2017
PMID: 28543529
Distinct carbon sources affect structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells.
Correia C, Koshkin A, Duarte P, Hu D, Teixeira A, Domian I, Serra M, Alves PM., Sci Rep 7(1), 2017
PMID: 28819274
3D Bioprinting and In Vitro Cardiovascular Tissue Modeling.
Jang J., Bioengineering (Basel) 4(3), 2017
PMID: 28952550
Frequency-dependent drug screening using optogenetic stimulation of human iPSC-derived cardiomyocytes.
Lapp H, Bruegmann T, Malan D, Friedrichs S, Kilgus C, Heidsieck A, Sasse P., Sci Rep 7(1), 2017
PMID: 28851973
Patch-Clamp Recording from Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Improving Action Potential Characteristics through Dynamic Clamp.
Verkerk AO, Veerman CC, Zegers JG, Mengarelli I, Bezzina CR, Wilders R., Int J Mol Sci 18(9), 2017
PMID: 28867785
Human pluripotent stem cell models of cardiac disease: from mechanisms to therapies.
Brandão KO, Tabel VA, Atsma DE, Mummery CL, Davis RP., Dis Model Mech 10(9), 2017
PMID: 28883014
A Singular Role of IK1 Promoting the Development of Cardiac Automaticity during Cardiomyocyte Differentiation by IK1 -Induced Activation of Pacemaker Current.
Sun Y, Timofeyev V, Dennis A, Bektik E, Wan X, Laurita KR, Deschênes I, Li RA, Fu JD., Stem Cell Rev Rep 13(5), 2017
PMID: 28623610
Characterization of a Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Model for the Study of Variant Pathogenicity: Validation of a KCNJ2 Mutation.
Gélinas R, El Khoury N, Chaix MA, Beauchamp C, Alikashani A, Ethier N, Boucher G, Villeneuve L, Robb L, Latour F, Mondesert B, Rivard L, Goyette P, Talajic M, Fiset C, Rioux JD., Circ Cardiovasc Genet 10(5), 2017
PMID: 29021306
Frequency-Dependent Multi-Well Cardiotoxicity Screening Enabled by Optogenetic Stimulation.
Rehnelt S, Malan D, Juhasz K, Wolters B, Doerr L, Beckler M, Kettenhofen R, Bohlen H, Bruegmann T, Sasse P., Int J Mol Sci 18(12), 2017
PMID: 29211031
Electrical and mechanical stimulation of cardiac cells and tissue constructs.
Stoppel WL, Kaplan DL, Black LD., Adv Drug Deliv Rev 96(), 2016
PMID: 26232525
Action Potential Shape Is a Crucial Measure of Cell Type of Stem Cell-Derived Cardiocytes.
Bett GC, Kaplan AD, Rasmusson RL., Biophys J 110(1), 2016
PMID: 26745432
Dominant negative consequences of a hERG 1b-specific mutation associated with intrauterine fetal death.
Jones DK, Liu F, Dombrowski N, Joshi S, Robertson GA., Prog Biophys Mol Biol 120(1-3), 2016
PMID: 26772437
Strategies and Challenges to Myocardial Replacement Therapy.
Feric NT, Radisic M., Stem Cells Transl Med 5(4), 2016
PMID: 26933042
Induced pluripotent stem cells: at the heart of cardiovascular precision medicine.
Chen IY, Matsa E, Wu JC., Nat Rev Cardiol 13(6), 2016
PMID: 27009425
Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Afford New Opportunities in Inherited Cardiovascular Disease Modeling.
Bayzigitov DR, Medvedev SP, Dementyeva EV, Bayramova SA, Pokushalov EA, Karaskov AM, Zakian SM., Cardiol Res Pract 2016(), 2016
PMID: 27110425
IK1-enhanced human-induced pluripotent stem cell-derived cardiomyocytes: an improved cardiomyocyte model to investigate inherited arrhythmia syndromes.
Vaidyanathan R, Markandeya YS, Kamp TJ, Makielski JC, January CT, Eckhardt LL., Am J Physiol Heart Circ Physiol 310(11), 2016
PMID: 27059077
Nanowires and Electrical Stimulation Synergistically Improve Functions of hiPSC Cardiac Spheroids.
Richards DJ, Tan Y, Coyle R, Li Y, Xu R, Yeung N, Parker A, Menick DR, Tian B, Mei Y., Nano Lett 16(7), 2016
PMID: 27328393
Three-Dimensional Adult Cardiac Extracellular Matrix Promotes Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.
Fong AH, Romero-López M, Heylman CM, Keating M, Tran D, Sobrino A, Tran AQ, Pham HH, Fimbres C, Gershon PD, Botvinick EL, George SC, Hughes CC., Tissue Eng Part A 22(15-16), 2016
PMID: 27392582
Electrophysiological characteristics of permanent atrial fibrillation: insights from research models of cardiac remodeling.
Climent AM, Guillem MS, Atienza F, Fernández-Avilés F., Expert Rev Cardiovasc Ther 13(1), 2015
PMID: 25434351
Cytoprotection of baicalein against oxidative stress-induced cardiomyocytes injury through the Nrf2/Keap1 pathway.
Cui G, Luk SC, Li RA, Chan KK, Lei SW, Wang L, Shen H, Leung GP, Lee SM., J Cardiovasc Pharmacol 65(1), 2015
PMID: 25343567
Mechanism of automaticity in cardiomyocytes derived from human induced pluripotent stem cells.
Kim JJ, Yang L, Lin B, Zhu X, Sun B, Kaplan AD, Bett GC, Rasmusson RL, London B, Salama G., J Mol Cell Cardiol 81(), 2015
PMID: 25644533
Ion channelopathies in human induced pluripotent stem cell derived cardiomyocytes: a dynamic clamp study with virtual IK1.
Meijer van Putten RM, Mengarelli I, Guan K, Zegers JG, van Ginneken AC, Verkerk AO, Wilders R., Front Physiol 6(), 2015
PMID: 25691870
Immaturity of human stem-cell-derived cardiomyocytes in culture: fatal flaw or soluble problem?
Veerman CC, Kosmidis G, Mummery CL, Casini S, Verkerk AO, Bellin M., Stem Cells Dev 24(9), 2015
PMID: 25583389
Proteomic Analysis of Human Pluripotent Stem Cell-Derived, Fetal, and Adult Ventricular Cardiomyocytes Reveals Pathways Crucial for Cardiac Metabolism and Maturation.
Poon E, Keung W, Liang Y, Ramalingam R, Yan B, Zhang S, Chopra A, Moore J, Herren A, Lieu DK, Wong HS, Weng Z, Wong OT, Lam YW, Tomaselli GF, Chen C, Boheler KR, Li RA., Circ Cardiovasc Genet 8(3), 2015
PMID: 25759434
Silicon nanowire-induced maturation of cardiomyocytes derived from human induced pluripotent stem cells.
Tan Y, Richards D, Xu R, Stewart-Clark S, Mani SK, Borg TK, Menick DR, Tian B, Mei Y., Nano Lett 15(5), 2015
PMID: 25826336
Arrhythmia in stem cell transplantation.
Almeida SO, Skelton RJ, Adigopula S, Ardehali R., Card Electrophysiol Clin 7(2), 2015
PMID: 26002399
Electrical and Mechanical Strategies to Enable Cardiac Repair and Regeneration.
Cao H, Kang BJ, Lee CA, Shung KK, Hsiai TK., IEEE Rev Biomed Eng 8(), 2015
PMID: 25974948
Prospects for In Vitro Myofilament Maturation in Stem Cell-Derived Cardiac Myocytes.
Schwan J, Campbell SG., Biomark Insights 10(suppl 1), 2015
PMID: 26085788
Concise Review: Cardiac Disease Modeling Using Induced Pluripotent Stem Cells.
Yang C, Al-Aama J, Stojkovic M, Keavney B, Trafford A, Lako M, Armstrong L., Stem Cells 33(9), 2015
PMID: 26033645
Role of atrial tissue remodeling on rotor dynamics: an in vitro study.
Climent AM, Guillem MS, Fuentes L, Lee P, Bollensdorff C, Fernández-Santos ME, Suárez-Sancho S, Sanz-Ruiz R, Sánchez PL, Atienza F, Fernández-Avilés F., Am J Physiol Heart Circ Physiol 309(11), 2015
PMID: 26408535
G-protein Coupled Receptor Signaling in Pluripotent Stem Cell-derived Cardiovascular Cells: Implications for Disease Modeling.
Dolatshad NF, Hellen N, Jabbour RJ, Harding SE, Földes G., Front Cell Dev Biol 3(), 2015
PMID: 26697426
Induced pluripotent stem cells as cardiac arrhythmic in vitro models and the impact for drug discovery.
Sarić T, Halbach M, Khalil M, Er F., Expert Opin Drug Discov 9(1), 2014
PMID: 24294840
Use of flow, electrical, and mechanical stimulation to promote engineering of striated muscles.
Rangarajan S, Madden L, Bursac N., Ann Biomed Eng 42(7), 2014
PMID: 24366526
Rapid cellular phenotyping of human pluripotent stem cell-derived cardiomyocytes using a genetically encoded fluorescent voltage sensor.
Leyton-Mange JS, Mills RW, Macri VS, Jang MY, Butte FN, Ellinor PT, Milan DJ., Stem Cell Reports 2(2), 2014
PMID: 24527390
A simple, cost-effective but highly efficient system for deriving ventricular cardiomyocytes from human pluripotent stem cells.
Weng Z, Kong CW, Ren L, Karakikes I, Geng L, He J, Chow MZ, Mok CF, Chan, Webb, Keung W, Chow H, Miller, Leung AY, Hajjar RJ, Li RA, Chan CW., Stem Cells Dev 23(14), 2014
PMID: 24564569
Pluripotent stem cells as a platform for cardiac arrhythmia drug screening.
Leyton-Mange JS, Milan DJ., Curr Treat Options Cardiovasc Med 16(9), 2014
PMID: 25074263
iPCS Cell Modeling of Inherited Cardiac Arrhythmias.
Shinnawi R, Gepstein L., Curr Treat Options Cardiovasc Med 16(9), 2014
PMID: 25080030
Automated grouping of action potentials of human embryonic stem cell-derived cardiomyocytes.
Gorospe G, Zhu R, Millrod MA, Zambidis ET, Tung L, Vidal R., IEEE Trans Biomed Eng 61(9), 2014
PMID: 25148658
Physical developmental cues for the maturation of human pluripotent stem cell-derived cardiomyocytes.
Zhu R, Blazeski A, Poon E, Costa KD, Tung L, Boheler KR., Stem Cell Res Ther 5(5), 2014
PMID: 25688759
hERG 1b is critical for human cardiac repolarization.
Jones DK, Liu F, Vaidyanathan R, Eckhardt LL, Trudeau MC, Robertson GA., Proc Natl Acad Sci U S A 111(50), 2014
PMID: 25453103
Relaxin suppresses atrial fibrillation by reversing fibrosis and myocyte hypertrophy and increasing conduction velocity and sodium current in spontaneously hypertensive rat hearts.
Parikh A, Patel D, McTiernan CF, Xiang W, Haney J, Yang L, Lin B, Kaplan AD, Bett GC, Rasmusson RL, Shroff SG, Schwartzman D, Salama G., Circ Res 113(3), 2013
PMID: 23748429
Materials science and tissue engineering: repairing the heart.
Radisic M, Christman KL., Mayo Clin Proc 88(8), 2013
PMID: 23910415
Effect of engineered anisotropy on the susceptibility of human pluripotent stem cell-derived ventricular cardiomyocytes to arrhythmias.
Wang J, Chen A, Lieu DK, Karakikes I, Chen G, Keung W, Chan CW, Hajjar RJ, Costa KD, Khine M, Li RA., Biomaterials 34(35), 2013
PMID: 23942210
Electronic "expression" of the inward rectifier in cardiocytes derived from human-induced pluripotent stem cells.
Bett GC, Kaplan AD, Lis A, Cimato TR, Tzanakakis ES, Zhou Q, Morales MJ, Rasmusson RL., Heart Rhythm 10(12), 2013
PMID: 24055949
Maturation of stem cell-derived human heart tissue by mimicking fetal heart rate.
Nunes SS, Miklas JW, Radisic M., Future Cardiol 9(6), 2013
PMID: 24180529

43 References

Daten bereitgestellt von Europe PubMed Central.

Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes.
Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L., J. Clin. Invest. 108(3), 2001
PMID: 11489934
Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells.
Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, van der Heyden M, Opthof T, Pera M, de la Riviere AB, Passier R, Tertoolen L., Circulation 107(21), 2003
PMID: 12742992
Human embryonic stem cells.
Pera MF, Reubinoff B, Trounson A., J. Cell. Sci. 113 ( Pt 1)(), 2000
PMID: 10591620
Primate embryonic stem cells.
Thomson JA, Marshall VS., Curr. Top. Dev. Biol. 38(), 1998
PMID: 9399078
Embryonic stem cell lines derived from human blastocysts.
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM., Science 282(5391), 1998
PMID: 9804556
Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro.
Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A., Nat. Biotechnol. 18(4), 2000
PMID: 10748519
Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells.
Xu C, Police S, Rao N, Carpenter MK., Circ. Res. 91(6), 2002
PMID: 12242268
Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes.
Satin J, Kehat I, Caspi O, Huber I, Arbel G, Itzhaki I, Magyar J, Schroder EA, Perlman I, Gepstein L., J. Physiol. (Lond.) 559(Pt 2), 2004
PMID: 15243138
Induced pluripotent stem cell lines derived from human somatic cells
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA., 2007
Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population.
Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM., Nature 453(7194), 2008
PMID: 18432194
Construction of adenovirus vectors through Cre-lox recombination.
Hardy S, Kitamura M, Harris-Stansil T, Dai Y, Phipps ML., J. Virol. 71(3), 1997
PMID: 9032314
An ionic model for rhythmic activity in small clusters of embryonic chick ventricular cells.
Krogh-Madsen T, Schaffer P, Skriver AD, Taylor LK, Pelzmann B, Koidl B, Guevara MR., Am. J. Physiol. Heart Circ. Physiol. 289(1), 2005
PMID: 15708964
Non-equilibrium behavior of HCN channels: insights into the role of HCN channels in native and engineered pacemakers.
Azene EM, Xue T, Marban E, Tomaselli GF, Li RA., Cardiovasc. Res. 67(2), 2005
PMID: 16005302
Differentiation of pluripotent embryonic stem cells into cardiomyocytes.
Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, Wobus AM., Circ. Res. 91(3), 2002
PMID: 12169644
Alternans and spiral breakup in a human ventricular tissue model.
ten Tusscher KH, Panfilov AV., Am. J. Physiol. Heart Circ. Physiol. 291(3), 2006
PMID: 16565318
Calcium transients in infant human atrial myocytes.
Wagner MB, Wang Y, Kumar R, Tipparaju SM, Joyner RW., Pediatr. Res. 57(1), 2004
PMID: 15557105
Differences in transient outward current properties between neonatal and adult human atrial myocytes.
Wang Y, Xu H, Kumar R, Tipparaju SM, Wagner MB, Joyner RW., J. Mol. Cell. Cardiol. 35(9), 2003
PMID: 12967631
Embryonic induction.
Saxen L., Clin Obstet Gynecol 18(4), 1975
PMID: 765032
Distinct cardiogenic preferences of two human embryonic stem cell (hESC) lines are imprinted in their proteomes in the pluripotent state.
Moore JC, Fu J, Chan YC, Lin D, Tran H, Tse HF, Li RA., Biochem. Biophys. Res. Commun. 372(4), 2008
PMID: 18503758
Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach.
Sartiani L, Bettiol E, Stillitano F, Mugelli A, Cerbai E, Jaconi ME., Stem Cells 25(5), 2007
PMID: 17255522
Mechanisms of disease: ion channel remodeling in the failing ventricle.
Nass RD, Aiba T, Tomaselli GF, Akar FG., Nat Clin Pract Cardiovasc Med 5(4), 2008
PMID: 18317475
Metabolic gene expression in fetal and failing human heart.
Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H., Circulation 104(24), 2001
PMID: 11739307
Extracellular K+ dependence of inward rectification kinetics in human left ventricular cardiomyocytes.
Bailly P, Mouchoniere M, Benitah JP, Camilleri L, Vassort G, Lorente P., Circulation 98(24), 1998
PMID: 9851963
Facilitated maturation of Ca2+ handling properties of human embryonic stem cell-derived cardiomyocytes by calsequestrin expression.
Liu J, Lieu DK, Siu CW, Fu JD, Tse HF, Li RA., Am. J. Physiol., Cell Physiol. 297(1), 2009
PMID: 19357236
Interactive effects of surface topography and pulsatile electrical field stimulation on orientation and elongation of fibroblasts and cardiomyocytes
Au HT, Cheng I, Chowdhury MF, Radisic M., 2007
Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds.
Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, Freed LE, Vunjak-Novakovic G., Proc. Natl. Acad. Sci. U.S.A. 101(52), 2004
PMID: 15604141
Reduction of I(to) causes hypertrophy in neonatal rat ventricular myocytes.
Kassiri Z, Zobel C, Nguyen TT, Molkentin JD, Backx PH., Circ. Res. 90(5), 2002
PMID: 11909822
Mechanotransduction in cardiac myocytes.
Lammerding J, Kamm RD, Lee RT., Ann. N. Y. Acad. Sci. 1015(), 2004
PMID: 15201149
In vivo cardiac gene transfer of Kv4.3 abrogates the hypertrophic response in rats after aortic stenosis.
Lebeche D, Kaprielian R, del Monte F, Tomaselli G, Gwathmey JK, Schwartz A, Hajjar RJ., Circulation 110(22), 2004
PMID: 15557376
Prevention of hypertrophy by overexpression of Kv4.2 in cultured neonatal cardiomyocytes.
Zobel C, Kassiri Z, Nguyen TT, Meng Y, Backx PH., Circulation 106(18), 2002
PMID: 12403671
Stretch-induced alterations of human Kir2.1 channel currents.
He Y, Xiao J, Yang Y, Zhou Q, Zhang Z, Pan Q, Liu Y, Chen Y., Biochem. Biophys. Res. Commun. 351(2), 2006
PMID: 17067550
Embryonic stem cell-derived cardiomyocyte heterogeneity and the isolation of immature and committed cells for cardiac remodeling and regeneration.
Boheler KR, Joodi RN, Qiao H, Juhasz O, Urick AL, Chuppa SL, Gundry RL, Wersto RP, Zhou R., Stem Cells Int 2011(), 2011
PMID: 21912557
Electrophysiological maturation and integration of murine fetal cardiomyocytes after transplantation.
Halbach M, Pfannkuche K, Pillekamp F, Ziomka A, Hannes T, Reppel M, Hescheler J, Muller-Ehmsen J., Circ. Res. 101(5), 2007
PMID: 17641227
Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages.
Bu L, Jiang X, Martin-Puig S, Caron L, Zhu S, Shao Y, Roberts DJ, Huang PL, Domian IJ, Chien KR., Nature 460(7251), 2009
PMID: 19571884
Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification.
Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, Qyang Y, Bu L, Sasaki M, Martin-Puig S, Sun Y, Evans SM, Laugwitz KL, Chien KR., Cell 127(6), 2006
PMID: 17123592
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23392582
PubMed | Europe PMC

Suchen in

Google Scholar