The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins

Barabino SM, Hübner W, Jenny A, Minvielle-Sebastia L, Keller W (1997)
Genes & development 11(13): 1703-1716.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Barabino, S M; Hübner, WolfgangUniBi ; Jenny, A; Minvielle-Sebastia, L; Keller, W
Abstract / Bemerkung
Cleavage and polyadenylation specificity factor (CPSF), a key component of the mammalian RNA 3'-end processing machinery, consists of four subunits of 160, 100, 73, and 30 kD. Here we report the isolation and characterization of a cDNA encoding the 30-kD polypeptide. Antibodies raised against this protein inhibit cleavage and polyadenylation and coimmunoprecipitate the other CPSF subunits. The protein sequence contains five C3H-zinc-finger repeats and a putative RNA-binding zinc knuckle motif at the carboxyl terminus. Consistent with this observation, the in vitro translated 30-kD protein binds RNA polymers with a distinct preference for poly(U). In addition, an essential S. cerevisiae gene, YTH1, was cloned which is 40% identical to CPSF 30K at the protein level. Extracts prepared from a conditional yth1 mutant have normal cleavage activity, but fail to polyadenylate the upstream cleavage product. Efficient polyadenylation activity can be restored by the addition of purified polyadenylation factor I (PF I). We demonstrate that Yth1p is a component of PF I that interacts in vivo and in vitro with Fip1p, a known PF I subunit.
RNA-Binding Proteins/genetics; Fungal/metabolism; RNA; Poly A/metabolism; Molecular Sequence Data; Mammals; Humans; HeLa Cells; Molecular; Cloning; Amino Acid Sequence; Animals; RNA-Binding Proteins/metabolism; Saccharomyces cerevisiae/genetics; Saccharomyces cerevisiae/metabolism; Zinc Fingers; mRNA Cleavage and Polyadenylation Factors
Genes & development
Page URI


Barabino SM, Hübner W, Jenny A, Minvielle-Sebastia L, Keller W. The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins. Genes & development. 1997;11(13):1703-1716.
Barabino, S. M., Hübner, W., Jenny, A., Minvielle-Sebastia, L., & Keller, W. (1997). The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins. Genes & development, 11(13), 1703-1716. doi:10.1101/gad.11.13.1703
Barabino, S M, Hübner, Wolfgang, Jenny, A, Minvielle-Sebastia, L, and Keller, W. 1997. “The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins”. Genes & development 11 (13): 1703-1716.
Barabino, S. M., Hübner, W., Jenny, A., Minvielle-Sebastia, L., and Keller, W. (1997). The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins. Genes & development 11, 1703-1716.
Barabino, S.M., et al., 1997. The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins. Genes & development, 11(13), p 1703-1716.
S.M. Barabino, et al., “The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins”, Genes & development, vol. 11, 1997, pp. 1703-1716.
Barabino, S.M., Hübner, W., Jenny, A., Minvielle-Sebastia, L., Keller, W.: The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins. Genes & development. 11, 1703-1716 (1997).
Barabino, S M, Hübner, Wolfgang, Jenny, A, Minvielle-Sebastia, L, and Keller, W. “The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins”. Genes & development 11.13 (1997): 1703-1716.

105 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Virulence- and signaling-associated genes display a preference for long 3'UTRs during rice infection and metabolic stress in the rice blast fungus.
Rodríguez-Romero J, Marconi M, Ortega-Campayo V, Demuez M, Wilkinson MD, Sesma A., New Phytol 221(1), 2019
PMID: 30169888
Evolutionary Analysis of Makorin Ring Finger Protein 3 Reveals Positive Selection in Mammals.
Ahmad MJ, Ahmad HI, Adeel MM, Liang A, Hua G, Murtaza S, Mirza RH, Elokil A, Ullah F, Yang L., Evol Bioinform Online 15(), 2019
PMID: 31024214
Molecular basis for the recognition of the human AAUAAA polyadenylation signal.
Sun Y, Zhang Y, Hamilton K, Manley JL, Shi Y, Walz T, Tong L., Proc Natl Acad Sci U S A 115(7), 2018
PMID: 29208711
Distinct roles of Pcf11 zinc-binding domains in pre-mRNA 3'-end processing.
Guéguéniat J, Dupin AF, Stojko J, Beaurepaire L, Cianférani S, Mackereth CD, Minvielle-Sébastia L, Fribourg S., Nucleic Acids Res 45(17), 2017
PMID: 28973460
CstF-64 and 3'-UTR cis-element determine Star-PAP specificity for target mRNA selection by excluding PAPα.
Kandala DT, Mohan N, A V, A P S, G R, Laishram RS., Nucleic Acids Res 44(2), 2016
PMID: 26496945
CREB-binding protein regulates lung cancer growth by targeting MAPK and CPSF4 signaling pathway.
Tang Z, Yu W, Zhang C, Zhao S, Yu Z, Xiao X, Tang R, Xuan Y, Yang W, Hao J, Xu T, Zhang Q, Huang W, Deng W, Guo W., Mol Oncol 10(2), 2016
PMID: 26628108
Recognition of distinct RNA motifs by the clustered CCCH zinc fingers of neuronal protein Unkempt.
Murn J, Teplova M, Zarnack K, Shi Y, Patel DJ., Nat Struct Mol Biol 23(1), 2016
PMID: 26641712
Experimental Genome-Wide Determination of RNA Polyadenylation in Chlamydomonas reinhardtii.
Bell SA, Shen C, Brown A, Hunt AG., PLoS One 11(1), 2016
PMID: 26730730
Cleavage and polyadenylation specificity factor 30: An RNA-binding zinc-finger protein with an unexpected 2Fe-2S cluster.
Shimberg GD, Michalek JL, Oluyadi AA, Rodrigues AV, Zucconi BE, Neu HM, Ghosh S, Sureschandra K, Wilson GM, Stemmler TL, Michel SL., Proc Natl Acad Sci U S A 113(17), 2016
PMID: 27071088
Global Promotion of Alternative Internal Exon Usage by mRNA 3' End Formation Factors.
Misra A, Ou J, Zhu LJ, Green MR., Mol Cell 58(5), 2015
PMID: 25921069
A new pathway in the control of the initiation of puberty: the MKRN3 gene.
Abreu AP, Macedo DB, Brito VN, Kaiser UB, Latronico AC., J Mol Endocrinol 54(3), 2015
PMID: 25957321
The Y3** ncRNA promotes the 3' end processing of histone mRNAs.
Köhn M, Ihling C, Sinz A, Krohn K, Hüttelmaier S., Genes Dev 29(19), 2015
PMID: 26443846
A bioinformatic survey of RNA-binding proteins in Plasmodium.
Reddy BP, Shrestha S, Hart KJ, Liang X, Kemirembe K, Cui L, Lindner SE., BMC Genomics 16(), 2015
PMID: 26525978
A unified model for yeast transcript definition.
de Boer CG, van Bakel H, Tsui K, Li J, Morris QD, Nislow C, Greenblatt JF, Hughes TR., Genome Res 24(1), 2014
PMID: 24170600
CPSF4 activates telomerase reverse transcriptase and predicts poor prognosis in human lung adenocarcinomas.
Chen W, Qin L, Wang S, Li M, Shi D, Tian Y, Wang J, Fu L, Li Z, Guo W, Yu W, Yuan Y, Kang T, Huang W, Deng W., Mol Oncol 8(3), 2014
PMID: 24618080
Delineating the structural blueprint of the pre-mRNA 3'-end processing machinery.
Xiang K, Tong L, Manley JL., Mol Cell Biol 34(11), 2014
PMID: 24591651
RBBP6 isoforms regulate the human polyadenylation machinery and modulate expression of mRNAs with AU-rich 3' UTRs.
Di Giammartino DC, Li W, Ogami K, Yashinskie JJ, Hoque M, Tian B, Manley JL., Genes Dev 28(20), 2014
PMID: 25319826
CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3' processing.
Chan SL, Huppertz I, Yao C, Weng L, Moresco JJ, Yates JR, Ule J, Manley JL, Shi Y., Genes Dev 28(21), 2014
PMID: 25301780
Reconstitution of CPSF active in polyadenylation: recognition of the polyadenylation signal by WDR33.
Schönemann L, Kühn U, Martin G, Schäfer P, Gruber AR, Keller W, Zavolan M, Wahle E., Genes Dev 28(21), 2014
PMID: 25301781
Integration of developmental and environmental signals via a polyadenylation factor in Arabidopsis.
Liu M, Xu R, Merrill C, Hong L, Von Lanken C, Hunt AG, Li QQ., PLoS One 9(12), 2014
PMID: 25546057
Development of COS-SNP and HRM markers for high-throughput and reliable haplotype-based detection of Lr14a in durum wheat (Triticum durum Desf.).
Terracciano I, Maccaferri M, Bassi F, Mantovani P, Sanguineti MC, Salvi S, Simková H, Doležel J, Massi A, Ammar K, Kolmer J, Tuberosa R., Theor Appl Genet 126(4), 2013
PMID: 23292293
Nuclear-localized Asunder regulates cytoplasmic dynein localization via its role in the integrator complex.
Jodoin JN, Sitaram P, Albrecht TR, May SB, Shboul M, Lee E, Reversade B, Wagner EJ, Lee LA., Mol Biol Cell 24(18), 2013
PMID: 23904267
The snRNA-processing complex, Integrator, is required for ciliogenesis and dynein recruitment to the nuclear envelope via distinct mechanisms.
Jodoin JN, Shboul M, Albrecht TR, Lee E, Wagner EJ, Reversade B, Lee LA., Biol Open 2(12), 2013
PMID: 24285713
Upregulation of cleavage and polyadenylation specific factor 4 in lung adenocarcinoma and its critical role for cancer cell survival and proliferation.
Chen W, Guo W, Li M, Shi D, Tian Y, Li Z, Wang J, Fu L, Xiao X, Liu QQ, Wang S, Huang W, Deng W., PLoS One 8(12), 2013
PMID: 24358221
Signals for pre-mRNA cleavage and polyadenylation.
Tian B, Graber JH., Wiley Interdiscip Rev RNA 3(3), 2012
PMID: 22012871
mRNA 3' end processing factors: a phylogenetic comparison.
Darmon SK, Lutz CS., Comp Funct Genomics 2012(), 2012
PMID: 22400011
Genome-wide control of polyadenylation site choice by CPSF30 in Arabidopsis.
Thomas PE, Wu X, Liu M, Gaffney B, Ji G, Li QQ, Hunt AG., Plant Cell 24(11), 2012
PMID: 23136375
Pre-mRNA 3'-end processing complex assembly and function.
Chan S, Choi EA, Shi Y., Wiley Interdiscip Rev RNA 2(3), 2011
PMID: 21957020
Structural biology of poly(A) site definition.
Yang Q, Doublié S., Wiley Interdiscip Rev RNA 2(5), 2011
PMID: 21823232
X-ray structures of NS1 effector domain mutants.
Xia S, Robertus JD., Arch Biochem Biophys 494(2), 2010
PMID: 19995550
Ref2, a regulatory subunit of the yeast protein phosphatase 1, is a novel component of cation homoeostasis.
Ferrer-Dalmau J, González A, Platara M, Navarrete C, Martínez JL, Barreto L, Ramos J, Ariño J, Casamayor A., Biochem J 426(3), 2010
PMID: 20028335
The hunt for the 3' endonuclease.
Dominski Z., Wiley Interdiscip Rev RNA 1(2), 2010
PMID: 21935893
Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay.
Matsushita K, Takeuchi O, Standley DM, Kumagai Y, Kawagoe T, Miyake T, Satoh T, Kato H, Tsujimura T, Nakamura H, Akira S., Nature 458(7242), 2009
PMID: 19322177
Translational control by cytoplasmic polyadenylation in Xenopus oocytes.
Radford HE, Meijer HA, de Moor CH., Biochim Biophys Acta 1779(4), 2008
PMID: 18316045
Protein factors in pre-mRNA 3'-end processing.
Mandel CR, Bai Y, Tong L., Cell Mol Life Sci 65(7-8), 2008
PMID: 18158581
Structure of yeast poly(A) polymerase in complex with a peptide from Fip1, an intrinsically disordered protein.
Meinke G, Ezeokonkwo C, Balbo P, Stafford W, Moore C, Bohm A., Biochemistry 47(26), 2008
PMID: 18537269
Structural basis for suppression of a host antiviral response by influenza A virus.
Das K, Ma LC, Xiao R, Radvansky B, Aramini J, Zhao L, Marklund J, Kuo RL, Twu KY, Arnold E, Krug RM, Montelione GT., Proc Natl Acad Sci U S A 105(35), 2008
PMID: 18725644
Calmodulin interacts with and regulates the RNA-binding activity of an Arabidopsis polyadenylation factor subunit.
Delaney KJ, Xu R, Zhang J, Li QQ, Yun KY, Falcone DL, Hunt AG., Plant Physiol 140(4), 2006
PMID: 16500995
The CPSF30 binding site on the NS1A protein of influenza A virus is a potential antiviral target.
Twu KY, Noah DL, Rao P, Kuo RL, Krug RM., J Virol 80(8), 2006
PMID: 16571812
C. elegans GLA-3 is a novel component of the MAP kinase MPK-1 signaling pathway required for germ cell survival.
Kritikou EA, Milstein S, Vidalain PO, Lettre G, Bogan E, Doukoumetzidis K, Gray P, Chappell TG, Vidal M, Hengartner MO., Genes Dev 20(16), 2006
PMID: 16912277
In vivo aggregation properties of the nuclear poly(A)-binding protein PABPN1.
Tavanez JP, Calado P, Braga J, Lafarga M, Carmo-Fonseca M., RNA 11(5), 2005
PMID: 15811916
Smicl is a novel Smad interacting protein and cleavage and polyadenylation specificity factor associated protein.
Collart C, Remacle JE, Barabino S, van Grunsven LA, Nelles L, Schellens A, Van de Putte T, Pype S, Huylebroeck D, Verschueren K., Genes Cells 10(9), 2005
PMID: 16115198
Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase.
Kaufmann I, Martin G, Friedlein A, Langen H, Keller W., EMBO J 23(3), 2004
PMID: 14749727
Suppressor of sable, a putative RNA-processing protein, functions at the level of transcription.
Kuan YS, Brewer-Jensen P, Searles LL., Mol Cell Biol 24(9), 2004
PMID: 15082769
Cellular source of the poxviral N1R/p28 gene family.
Nicholls RD, Gray TA., Virus Genes 29(3), 2004
PMID: 15550777
An interaction between an Arabidopsis poly(A) polymerase and a homologue of the 100 kDa subunit of CPSF.
Elliott BJ, Dattaroy T, Meeks-Midkiff LR, Forbes KP, Hunt AG., Plant Mol Biol 51(3), 2003
PMID: 12602868
Downstream elements of mammalian pre-mRNA polyadenylation signals: primary, secondary and higher-order structures.
Zarudnaya MI, Kolomiets IM, Potyahaylo AL, Hovorun DM., Nucleic Acids Res 31(5), 2003
PMID: 12595544
Pti1p and Ref2p found in association with the mRNA 3' end formation complex direct snoRNA maturation.
Dheur S, Vo le TA, Voisinet-Hakil F, Minet M, Schmitter JM, Lacroute F, Wyers F, Minvielle-Sebastia L., EMBO J 22(11), 2003
PMID: 12773397
Biology of mammalian L1 retrotransposons.
Ostertag EM, Kazazian HH., Annu Rev Genet 35(), 2001
PMID: 11700292
Fip1 regulates the activity of Poly(A) polymerase through multiple interactions.
Helmling S, Zhelkovsky A, Moore CL., Mol Cell Biol 21(6), 2001
PMID: 11238938
Two zinc finger proteins, OMA-1 and OMA-2, are redundantly required for oocyte maturation in C. elegans.
Detwiler MR, Reuben M, Li X, Rogers E, Lin R., Dev Cell 1(2), 2001
PMID: 11702779
The Drosophila homologue of the 64 kDa subunit of cleavage stimulation factor interacts with the 77 kDa subunit encoded by the suppressor of forked gene.
Hatton LS, Eloranta JJ, Figueiredo LM, Takagaki Y, Manley JL, O'Hare K., Nucleic Acids Res 28(2), 2000
PMID: 10606651
MEX-5 and MEX-6 function to establish soma/germline asymmetry in early C. elegans embryos.
Schubert CM, Lin R, de Vries CJ, Plasterk RH, Priess JR., Mol Cell 5(4), 2000
PMID: 10882103
The ancient source of a distinct gene family encoding proteins featuring RING and C(3)H zinc-finger motifs with abundant expression in developing brain and nervous system.
Gray TA, Hernandez L, Carey AH, Schaldach MA, Smithwick MJ, Rus K, Marshall Graves JA, Stewart CL, Nicholls RD., Genomics 66(1), 2000
PMID: 10843807
Selective nuclear export of viral mRNAs in influenza-virus-infected cells.
Chen Z, Krug RM., Trends Microbiol 8(8), 2000
PMID: 10920397
Human pre-mRNA cleavage factor II(m) contains homologs of yeast proteins and bridges two other cleavage factors.
de Vries H, Rüegsegger U, Hübner W, Friedlein A, Langen H, Keller W., EMBO J 19(21), 2000
PMID: 11060040
Transcriptional repression by the Caenorhabditis elegans germ-line protein PIE-1.
Batchelder C, Dunn MA, Choy B, Suh Y, Cassie C, Shim EY, Shin TH, Mello C, Seydoux G, Blackwell TK., Genes Dev 13(2), 1999
PMID: 9925644
A novel imprinted gene, encoding a RING zinc-finger protein, and overlapping antisense transcript in the Prader-Willi syndrome critical region.
Jong MT, Gray TA, Ji Y, Glenn CC, Saitoh S, Driscoll DJ, Nicholls RD., Hum Mol Genet 8(5), 1999
PMID: 10196367
3'-End processing of pre-mRNA in eukaryotes.
Wahle E, Rüegsegger U., FEMS Microbiol Rev 23(3), 1999
PMID: 10371034
A large-scale insertional mutagenesis screen in zebrafish.
Amsterdam A, Burgess S, Golling G, Chen W, Sun Z, Townsend K, Farrington S, Haldi M, Hopkins N., Genes Dev 13(20), 1999
PMID: 10541557
Pta1, a component of yeast CF II, is required for both cleavage and poly(A) addition of mRNA precursor.
Zhao J, Kessler M, Helmling S, O'Connor JP, Moore C., Mol Cell Biol 19(11), 1999
PMID: 10523662
The upstream sequence element of the C2 complement poly(A) signal activates mRNA 3' end formation by two distinct mechanisms.
Moreira A, Takagaki Y, Brackenridge S, Wollerton M, Manley JL, Proudfoot NJ., Genes Dev 12(16), 1998
PMID: 9716405
Control of cleavage site selection during mRNA 3' end formation by a yeast hnRNP.
Minvielle-Sebastia L, Beyer K, Krecic AM, Hector RE, Swanson MS, Keller W., EMBO J 17(24), 1998
PMID: 9857200

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 9224719
PubMed | Europe PMC

Suchen in

Google Scholar