Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid

Furtado GC, Marinkovic T, Martin AP, Garin A, Hoch B, Hübner W, Chen BK, Genden E, Skobe M, Lira SA (2007)
Proceedings of the National Academy of Sciences of the United States of America 104(12): 5026-5031.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Furtado, Glaucia C; Marinkovic, Tatjana; Martin, Andrea P; Garin, Alexandre; Hoch, Benjamin; Hübner, WolfgangUniBi ; Chen, Benjamin K; Genden, Eric; Skobe, Mihaela; Lira, Sergio A
Abstract / Bemerkung
Infiltration of lymphocytes into the thyroid gland and formation of lymph node-like structures is a hallmark of Hashimoto's thyroiditis. Here we demonstrate that lymphatic vessels are present within these infiltrates. Mice overexpressing the chemokine CCL21 in the thyroid (TGCCL21 mice) developed similar lymphoid infiltrates and lymphatic vessels. TGCCL21 mice lacking mature T and B cells (RAGTGCCL21 mice) did not have cellular infiltrates or increased number of lymphatic vessels compared with controls. Transfer of CD3(+)CD4(+) T cells into RAGTGCCL21 mice promoted the development of LYVE-1(+)podoplanin(+)Prox-1(+) vessels in the thyroid. Genetic deletion of lymphotoxin beta receptor or lymphotoxin alpha abrogated development of lymphatic vessels in the inflamed areas in the thyroid but did not affect development of neighboring lymphatics. These results define a model for the study of inflammatory lymphangiogenesis in the thyroid and implicate lymphotoxin beta receptor signaling in this process.
Stichworte
Mice; Lymphotoxin-alpha/deficiency; CD4-Positive T-Lymphocytes/immunology; Animals; Chemokine CCL21; Cell Separation; Chemokines; CC/metabolism; Hashimoto Disease/immunology; Hashimoto Disease/pathology; Humans; Inflammation; Lymphangiogenesis/immunology; Lymphatic Vessels/immunology; Lymphatic Vessels/pathology; Lymphoid Tissue/immunology; Mice; Lymphoid Tissue/pathology; Lymphotoxin beta Receptor/metabolism; Lymphotoxin beta Receptor/deficiency; Transgenic; Signal Transduction; Thyroid Gland/immunology; Thyroid Gland/pathology
Erscheinungsjahr
2007
Zeitschriftentitel
Proceedings of the National Academy of Sciences of the United States of America
Band
104
Ausgabe
12
Seite(n)
5026-5031
ISSN
0027-8424
eISSN
1091-6490
Page URI
https://pub.uni-bielefeld.de/record/2576936

Zitieren

Furtado GC, Marinkovic T, Martin AP, et al. Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(12):5026-5031.
Furtado, G. C., Marinkovic, T., Martin, A. P., Garin, A., Hoch, B., Hübner, W., Chen, B. K., et al. (2007). Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid. Proceedings of the National Academy of Sciences of the United States of America, 104(12), 5026-5031. doi:10.1073/pnas.0606697104
Furtado, Glaucia C, Marinkovic, Tatjana, Martin, Andrea P, Garin, Alexandre, Hoch, Benjamin, Hübner, Wolfgang, Chen, Benjamin K, Genden, Eric, Skobe, Mihaela, and Lira, Sergio A. 2007. “Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid”. Proceedings of the National Academy of Sciences of the United States of America 104 (12): 5026-5031.
Furtado, G. C., Marinkovic, T., Martin, A. P., Garin, A., Hoch, B., Hübner, W., Chen, B. K., Genden, E., Skobe, M., and Lira, S. A. (2007). Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid. Proceedings of the National Academy of Sciences of the United States of America 104, 5026-5031.
Furtado, G.C., et al., 2007. Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid. Proceedings of the National Academy of Sciences of the United States of America, 104(12), p 5026-5031.
G.C. Furtado, et al., “Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid”, Proceedings of the National Academy of Sciences of the United States of America, vol. 104, 2007, pp. 5026-5031.
Furtado, G.C., Marinkovic, T., Martin, A.P., Garin, A., Hoch, B., Hübner, W., Chen, B.K., Genden, E., Skobe, M., Lira, S.A.: Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid. Proceedings of the National Academy of Sciences of the United States of America. 104, 5026-5031 (2007).
Furtado, Glaucia C, Marinkovic, Tatjana, Martin, Andrea P, Garin, Alexandre, Hoch, Benjamin, Hübner, Wolfgang, Chen, Benjamin K, Genden, Eric, Skobe, Mihaela, and Lira, Sergio A. “Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid”. Proceedings of the National Academy of Sciences of the United States of America 104.12 (2007): 5026-5031.

53 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Immune Cell Infiltration and Tertiary Lymphoid Structures as Determinants of Antitumor Immunity.
Engelhard VH, Rodriguez AB, Mauldin IS, Woods AN, Peske JD, Slingluff CL., J Immunol 200(2), 2018
PMID: 29311385
Tertiary Lymphoid Structures: Autoimmunity Goes Local.
Pipi E, Nayar S, Gardner DH, Colafrancesco S, Smith C, Barone F., Front Immunol 9(), 2018
PMID: 30258435
Interactions between fibroblastic reticular cells and B cells promote mesenteric lymph node lymphangiogenesis.
Dubey LK, Karempudi P, Luther SA, Ludewig B, Harris NL., Nat Commun 8(1), 2017
PMID: 28848229
Inducible Bronchus-Associated Lymphoid Tissue: Taming Inflammation in the Lung.
Hwang JY, Randall TD, Silva-Sanchez A., Front Immunol 7(), 2016
PMID: 27446088
Bimodal Expansion of the Lymphatic Vessels Is Regulated by the Sequential Expression of IL-7 and Lymphotoxin α1β2 in Newly Formed Tertiary Lymphoid Structures.
Nayar S, Campos J, Chung MM, Navarro-Núñez L, Chachlani M, Steinthal N, Gardner DH, Rankin P, Cloake T, Caamaño JH, McGettrick HM, Watson SP, Luther S, Buckley CD, Barone F., J Immunol 197(5), 2016
PMID: 27474071
Early IL-1 Signaling Promotes iBALT Induction after Influenza Virus Infection.
Neyt K, GeurtsvanKessel CH, Deswarte K, Hammad H, Lambrecht BN., Front Immunol 7(), 2016
PMID: 27579026
The Hepatic Lymphatic Vascular System: Structure, Function, Markers, and Lymphangiogenesis.
Tanaka M, Iwakiri Y., Cell Mol Gastroenterol Hepatol 2(6), 2016
PMID: 28105461
Stromal Fibroblasts in Tertiary Lymphoid Structures: A Novel Target in Chronic Inflammation.
Barone F, Gardner DH, Nayar S, Steinthal N, Buckley CD, Luther SA., Front Immunol 7(), 2016
PMID: 27877173
Stromal cells in chronic inflammation and tertiary lymphoid organ formation.
Buckley CD, Barone F, Nayar S, Bénézech C, Caamaño J., Annu Rev Immunol 33(), 2015
PMID: 25861980
Tertiary lymphoid tissue in the tumor microenvironment: from its occurrence to immunotherapeutic implications.
Di Caro G, Castino GF, Bergomas F, Cortese N, Chiriva-Internati M, Grizzi F, Mantovani A, Marchesi F., Int Rev Immunol 34(2), 2015
PMID: 25901857
Effector lymphocyte-induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity.
Peske JD, Thompson ED, Gemta L, Baylis RA, Fu YX, Engelhard VH., Nat Commun 6(), 2015
PMID: 25968334
Lymphangiogenesis and Inflammation-Looking for the "Missing Pieces" of the Puzzle.
Cimpean AM, Raica M., Arch Immunol Ther Exp (Warsz) 63(6), 2015
PMID: 26169947
The inflammatory response of lymphatic endothelium.
Aebischer D, Iolyeva M, Halin C., Angiogenesis 17(2), 2014
PMID: 24154862
The role of lymphotoxin signaling in the development of autoimmune pancreatitis and associated secondary extra-pancreatic pathologies.
Seleznik GM, Zoller J, O'Connor T, Graf R, Heikenwalder M., Cytokine Growth Factor Rev 25(2), 2014
PMID: 24508087
Inflammatory lymphangiogenesis: cellular mediators and functional implications.
Tan KW, Chong SZ, Angeli V., Angiogenesis 17(2), 2014
PMID: 24449091
Lymphatic vessels and tertiary lymphoid organs.
Ruddle NH., J Clin Invest 124(3), 2014
PMID: 24590281
Preferential lymphatic growth in bronchus-associated lymphoid tissue in sustained lung inflammation.
Baluk P, Adams A, Phillips K, Feng J, Hong YK, Brown MB, McDonald DM., Am J Pathol 184(5), 2014
PMID: 24631179
Interplay between Inflammatory Responses and Lymphatic Vessels.
Shin K, Lee SH., Immune Netw 14(4), 2014
PMID: 25177250
Interleukin-7 is produced by afferent lymphatic vessels and supports lymphatic drainage.
Iolyeva M, Aebischer D, Proulx ST, Willrodt AH, Ecoiffier T, Häner S, Bouchaud G, Krieg C, Onder L, Ludewig B, Santambrogio L, Boyman O, Chen L, Finke D, Halin C., Blood 122(13), 2013
PMID: 23963040
Lymphocytes and the adventitial immune response in atherosclerosis.
Campbell KA, Lipinski MJ, Doran AC, Skaflen MD, Fuster V, McNamara CA., Circ Res 110(6), 2012
PMID: 22427326
Control of dichotomic innate and adaptive immune responses by artery tertiary lymphoid organs in atherosclerosis.
Weih F, Gräbner R, Hu D, Beer M, Habenicht AJ., Front Physiol 3(), 2012
PMID: 22783198
Lymphatic endothelial cells - key players in regulation of tolerance and immunity.
Tewalt EF, Cohen JN, Rouhani SJ, Engelhard VH., Front Immunol 3(), 2012
PMID: 23060883
The biology of chemokines and their receptors.
Lira SA, Furtado GC., Immunol Res 54(1-3), 2012
PMID: 22466932
Lymphatics, tertiary lymphoid organs and the granulomas of Crohn's disease: an immunohistochemical study.
Sura R, Colombel JF, Van Kruiningen HJ., Aliment Pharmacol Ther 33(8), 2011
PMID: 21366631
The development of inducible bronchus-associated lymphoid tissue depends on IL-17.
Rangel-Moreno J, Carragher DM, de la Luz Garcia-Hernandez M, Hwang JY, Kusser K, Hartson L, Kolls JK, Khader SA, Randall TD., Nat Immunol 12(7), 2011
PMID: 21666689
Lymphotoxin-beta receptor blockade reduces CXCL13 in lacrimal glands and improves corneal integrity in the NOD model of Sjögren's syndrome.
Fava RA, Kennedy SM, Wood SG, Bolstad AI, Bienkowska J, Papandile A, Kelly JA, Mavragani CP, Gatumu M, Skarstein K, Browning JL., Arthritis Res Ther 13(6), 2011
PMID: 22044682
Lymphangiogenesis: Molecular mechanisms and future promise.
Tammela T, Alitalo K., Cell 140(4), 2010
PMID: 20178740
Mechanism of lymph node metastasis in prostate cancer.
Datta K, Muders M, Zhang H, Tindall DJ., Future Oncol 6(5), 2010
PMID: 20465393
Lymphotoxin-alpha contributes to lymphangiogenesis.
Mounzer RH, Svendsen OS, Baluk P, Bergman CM, Padera TP, Wiig H, Jain RK, McDonald DM, Ruddle NH., Blood 116(12), 2010
PMID: 20566898
Toll-like receptor 4 signaling by follicular dendritic cells is pivotal for germinal center onset and affinity maturation.
Garin A, Meyer-Hermann M, Contie M, Figge MT, Buatois V, Gunzer M, Toellner KM, Elson G, Kosco-Vilbois MH., Immunity 33(1), 2010
PMID: 20643339
Lymphotoxin beta receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE-/- mice.
Gräbner R, Lötzer K, Döpping S, Hildner M, Radke D, Beer M, Spanbroek R, Lippert B, Reardon CA, Getz GS, Fu YX, Hehlgans T, Mebius RE, van der Wall M, Kruspe D, Englert C, Lovas A, Hu D, Randolph GJ, Weih F, Habenicht AJ., J Exp Med 206(1), 2009
PMID: 19139167
Blockade of lymphotoxin-beta receptor signaling reduces aspects of Sjögren's syndrome in salivary glands of non-obese diabetic mice.
Gatumu MK, Skarstein K, Papandile A, Browning JL, Fava RA, Bolstad AI., Arthritis Res Ther 11(1), 2009
PMID: 19222863
LTbetaR signaling induces cytokine expression and up-regulates lymphangiogenic factors in lymph node anlagen.
Vondenhoff MF, Greuter M, Goverse G, Elewaut D, Dewint P, Ware CF, Hoorweg K, Kraal G, Mebius RE., J Immunol 182(9), 2009
PMID: 19380791
Inflamed lymphatic endothelium suppresses dendritic cell maturation and function via Mac-1/ICAM-1-dependent mechanism.
Podgrabinska S, Kamalu O, Mayer L, Shimaoka M, Snoeck H, Randolph GJ, Skobe M., J Immunol 183(3), 2009
PMID: 19587009
CXCL13 expression in the gut promotes accumulation of IL-22-producing lymphoid tissue-inducer cells, and formation of isolated lymphoid follicles.
Marchesi F, Martin AP, Thirunarayanan N, Devany E, Mayer L, Grisotto MG, Furtado GC, Lira SA., Mucosal Immunol 2(6), 2009
PMID: 19741597
CCL21 overexpressed on lymphatic vessels drives thymic hyperplasia in myasthenia.
Berrih-Aknin S, Ruhlmann N, Bismuth J, Cizeron-Clairac G, Zelman E, Shachar I, Dartevelle P, de Rosbo NK, Le Panse R., Ann Neurol 66(4), 2009
PMID: 19847900
Tumor metastasis and the lymphatic vasculature.
Sleeman JP, Thiele W., Int J Cancer 125(12), 2009
PMID: 19569051
B cells and tertiary lymphoid organs in renal inflammation.
Segerer S, Schlöndorff D., Kidney Int 73(5), 2008
PMID: 18094677
Ectopic lymphoid tissues and local immunity.
Carragher DM, Rangel-Moreno J, Randall TD., Semin Immunol 20(1), 2008
PMID: 18243731
Fibroblast-type reticular stromal cells regulate the lymph node vasculature.
Chyou S, Ekland EH, Carpenter AC, Tzeng TC, Tian S, Michaud M, Madri JA, Lu TT., J Immunol 181(6), 2008
PMID: 18768843
Lymphangiogenesis, myeloid cells and inflammation.
Xing L, Ji RC., Expert Rev Clin Immunol 4(5), 2008
PMID: 20476963
Chemokine orchestration of autoimmune thyroiditis.
Kimura H, Caturegli P., Thyroid 17(10), 2007
PMID: 17910527

50 References

Daten bereitgestellt von Europe PubMed Central.

The lymphatic vasculature: recent progress and paradigms.
Oliver G, Alitalo K., Annu. Rev. Cell Dev. Biol. 21(), 2005
PMID: 16212503
Lymphangiogenesis in development and human disease.
Alitalo K, Tammela T, Petrova TV., Nature 438(7070), 2005
PMID: 16355212
Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues.
Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M, Littman DR, Rollins BJ, Zweerink H, Rot A, von Andrian UH., J. Exp. Med. 194(9), 2001
PMID: 11696600
Dendritic-cell trafficking to lymph nodes through lymphatic vessels.
Randolph GJ, Angeli V, Swartz MA., Nat. Rev. Immunol. 5(8), 2005
PMID: 16056255
Lymphatic vessel activation in cancer.
Cassella M, Skobe M., Ann. N. Y. Acad. Sci. 979(), 2002
PMID: 12543722
Lymphangiogenesis and tumor metastasis.
Pepper MS, Tille JC, Nisato R, Skobe M., Cell Tissue Res. 314(1), 2003
PMID: 12883995
Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates.
Kerjaschki D, Regele HM, Moosberger I, Nagy-Bojarski K, Watschinger B, Soleiman A, Birner P, Krieger S, Hovorka A, Silberhumer G, Laakkonen P, Petrova T, Langer B, Raab I., J. Am. Soc. Nephrol. 15(3), 2004
PMID: 14978162
Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages.
Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M, Van Rooijen N, Takenaka H, D'Amore PA, Stein-Streilein J, Losordo DW, Streilein JW., J. Clin. Invest. 115(9), 2005
PMID: 16138190
Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation.
Baluk P, Tammela T, Ator E, Lyubynska N, Achen MG, Hicklin DJ, Jeltsch M, Petrova TV, Pytowski B, Stacker SA, Yla-Herttuala S, Jackson DG, Alitalo K, McDonald DM., J. Clin. Invest. 115(2), 2005
PMID: 15668734
Vascular endothelial growth factors C and D and their VEGFR-2 and 3 receptors in blood and lymphatic vessels in healthy and arthritic synovium.
Paavonen K, Mandelin J, Partanen T, Jussila L, Li TF, Ristimaki A, Alitalo K, Konttinen YT., J. Rheumatol. 29(1), 2002
PMID: 11824969
Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants.
Kerjaschki D, Huttary N, Raab I, Regele H, Bojarski-Nagy K, Bartel G, Krober SM, Greinix H, Rosenmaier A, Karlhofer F, Wick N, Mazal PR., Nat. Med. 12(2), 2006
PMID: 16415878
The crucial role of macrophages in lymphangiogenesis.
Kerjaschki D., J. Clin. Invest. 115(9), 2005
PMID: 16138185
B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization.
Angeli V, Ginhoux F, Llodra J, Quemeneur L, Frenette PS, Skobe M, Jessberger R, Merad M, Randolph GJ., Immunity 24(2), 2006
PMID: 16473832
Lymphoid neogenesis in rheumatoid synovitis.
Takemura S, Braun A, Crowson C, Kurtin PJ, Cofield RH, O'Fallon WM, Goronzy JJ, Weyand CM., J. Immunol. 167(2), 2001
PMID: 11441118
Ectopic expression of the B cell-attracting chemokine BCA-1 (CXCL13) on endothelial cells and within lymphoid follicles contributes to the establishment of germinal center-like structures in Sjogren's syndrome.
Amft N, Curnow SJ, Scheel-Toellner D, Devadas A, Oates J, Crocker J, Hamburger J, Ainsworth J, Mathews J, Salmon M, Bowman SJ, Buckley CD., Arthritis Rheum. 44(11), 2001
PMID: 11710719
Autoimmune thyroid disease: new models of cell death in autoimmunity.
Stassi G, De Maria R., Nat. Rev. Immunol. 2(3), 2002
PMID: 11913070
Lymphoid neogenesis in chronic inflammatory diseases.
Aloisi F, Pujol-Borrell R., Nat. Rev. Immunol. 6(3), 2006
PMID: 16498451
Lymphoid organ development: from ontogeny to neogenesis.
Drayton DL, Liao S, Mounzer RH, Ruddle NH., Nat. Immunol. 7(4), 2006
PMID: 16550197
Chemokines determine local lymphoneogenesis and a reduction of circulating CXCR4+ T and CCR7 B and T lymphocytes in thyroid autoimmune diseases.
Armengol MP, Cardoso-Schmidt CB, Fernandez M, Ferrer X, Pujol-Borrell R, Juan M., J. Immunol. 170(12), 2003
PMID: 12794165
Induction of secondary and tertiary lymphoid structures in the skin.
Cupedo T, Jansen W, Kraal G, Mebius RE., Immunity 21(5), 2004
PMID: 15539152
A novel model for lymphocytic infiltration of the thyroid gland generated by transgenic expression of the CC chemokine CCL21.
Martin AP, Coronel EC, Sano G, Chen SC, Vassileva G, Canasto-Chibuque C, Sedgwick JD, Frenette PS, Lipp M, Furtado GC, Lira SA., J. Immunol. 173(8), 2004
PMID: 15470018
Ectopic expression of the murine chemokines CCL21a and CCL21b induces the formation of lymph node-like structures in pancreas, but not skin, of transgenic mice.
Chen SC, Vassileva G, Kinsley D, Holzmann S, Manfra D, Wiekowski MT, Romani N, Lira SA., J. Immunol. 168(3), 2002
PMID: 11801632
BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis.
Luther SA, Lopez T, Bai W, Hanahan D, Cyster JG., Immunity 12(5), 2000
PMID: 10843380
Lymphatic endothelium: morphological, molecular and functional properties.
Pepper MS, Skobe M., J. Cell Biol. 163(2), 2003
PMID: 14581448
Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis.
Nagy JA, Vasile E, Feng D, Sundberg C, Brown LF, Detmar MJ, Lawitts JA, Benjamin L, Tan X, Manseau EJ, Dvorak AM, Dvorak HF., J. Exp. Med. 196(11), 2002
PMID: 12461084
VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins.
Hong YK, Lange-Asschenfeldt B, Velasco P, Hirakawa S, Kunstfeld R, Brown LF, Bohlen P, Senger DR, Detmar M., FASEB J. 18(10), 2004
PMID: 15132990
Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2.
Roberts N, Kloos B, Cassella M, Podgrabinska S, Persaud K, Wu Y, Pytowski B, Skobe M., Cancer Res. 66(5), 2006
PMID: 16510584
Molecular and cellular mechanisms of lymphangiogenesis.
Al-Rawi MA, Mansel RE, Jiang WG., Eur J Surg Oncol 31(2), 2005
PMID: 15698725
Autoimmune thyroid disease: further developments in our understanding.
Weetman AP, McGregor AM., Endocr. Rev. 15(6), 1994
PMID: 7705281
Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium.
Breiteneder-Geleff S, Soleiman A, Kowalski H, Horvat R, Amann G, Kriehuber E, Diem K, Weninger W, Tschachler E, Alitalo K, Kerjaschki D., Am. J. Pathol. 154(2), 1999
PMID: 10027397

Jackson DG., 2004
Molecular characterization of lymphatic endothelial cells.
Podgrabinska S, Braun P, Velasco P, Kloos B, Pepper MS, Skobe M., Proc. Natl. Acad. Sci. U.S.A. 99(25), 2002
PMID: 12446836
An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype.
Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, Jackson DG, Oliver G., EMBO J. 21(7), 2002
PMID: 11927535
Interaction of mature CD3+CD4+ T cells with dendritic cells triggers the development of tertiary lymphoid structures in the thyroid.
Marinkovic T, Garin A, Yokota Y, Fu YX, Ruddle NH, Furtado GC, Lira SA., J. Clin. Invest. 116(10), 2006
PMID: 16998590
Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo.
Bjorndahl M, Cao R, Nissen LJ, Clasper S, Johnson LA, Xue Y, Zhou Z, Jackson D, Hansen AJ, Cao Y., Proc. Natl. Acad. Sci. U.S.A. 102(43), 2005
PMID: 16230630
The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues.
Futterer A, Mink K, Luz A, Kosco-Vilbois MH, Pfeffer K., Immunity 9(1), 1998
PMID: 9697836
Lymphotoxin-beta receptor signaling is required for the homeostatic control of HEV differentiation and function.
Browning JL, Allaire N, Ngam-Ek A, Notidis E, Hunt J, Perrin S, Fava RA., Immunity 23(5), 2005
PMID: 16286021
Lymphocyte traffic in lymphoid organ neogenesis: differential roles of Ltalpha and LTalphabeta.
Drayton DL, Chan K, Lesslauer W, Lee J, Ying XY, Ruddle NH., Adv. Exp. Med. Biol. 512(), 2002
PMID: 12405186
Distinct roles for lymphotoxin-alpha and tumor necrosis factor in organogenesis and spatial organization of lymphoid tissue.
Korner H, Cook M, Riminton DS, Lemckert FA, Hoek RM, Ledermann B, Kontgen F, Fazekas de St Groth B, Sedgwick JD., Eur. J. Immunol. 27(10), 1997
PMID: 9368616
Network communications: lymphotoxins, LIGHT, and TNF.
Ware CF., Annu. Rev. Immunol. 23(), 2005
PMID: 15771586
VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells.
Salven P, Mustjoki S, Alitalo R, Alitalo K, Rafii S., Blood 101(1), 2002
PMID: 12393704
The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways.
Dejardin E, Droin NM, Delhase M, Haas E, Cao Y, Makris C, Li ZW, Karin M, Ware CF, Green DR., Immunity 17(4), 2002
PMID: 12387745
RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement.
Shinkai Y, Rathbun G, Lam KP, Oltz EM, Stewart V, Mendelsohn M, Charron J, Datta M, Young F, Stall AM., Cell 68(5), 1992
PMID: 1547487
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 17360402
PubMed | Europe PMC

Suchen in

Google Scholar