A Circadian Clock-Regulated Toggle Switch Explains AtGRP7 and AtGRP8 Oscillations in Arabidopsis thaliana

Schmal C, Reimann P, Staiger D (2013)
PLoS Computational Biology 9(3): e1002986.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
The circadian clock controls many physiological processes in higher plants and causes a large fraction of the genome to be expressed with a 24h rhythm. The transcripts encoding the RNA-binding proteins AtGRP7 (Arabidopsis thaliana Glycine Rich Protein 7) and AtGRP8 oscillate with evening peaks. The circadian clock components CCA1 and LHY negatively affect AtGRP7 expression at the level of transcription. AtGRP7 and AtGRP8, in turn, negatively auto-regulate and reciprocally cross-regulate post-transcriptionally: high protein levels promote the generation of an alternative splice form that is rapidly degraded. This clock-regulated feedback loop has been proposed to act as a molecular slave oscillator in clock output. While mathematical models describing the circadian core oscillator in Arabidopsis thaliana were introduced recently, we propose here the first model of a circadian slave oscillator. We define the slave oscillator in terms of ordinary differential equations and identify the model's parameters by an optimization procedure based on experimental results. The model successfully reproduces the pertinent experimental findings such as waveforms, phases, and half-lives of the time-dependent concentrations. Furthermore, we obtain insights into possible mechanisms underlying the observed experimental dynamics: the negative auto-regulation and reciprocal cross-regulation via alternative splicing could be responsible for the sharply peaking waveforms of the AtGRP7 and AtGRP8 mRNA. Moreover, our results suggest that the AtGRP8 transcript oscillations are subordinated to those of AtGRP7 due to a higher impact of AtGRP7 protein on alternative splicing of its own and of the AtGRP8 pre-mRNA compared to the impact of AtGRP8 protein. Importantly, a bifurcation analysis provides theoretical evidence that the slave oscillator could be a toggle switch, arising from the reciprocal cross-regulation at the post-transcriptional level. In view of this, transcriptional repression of AtGRP7 and AtGRP8 by LHY and CCA1 induces oscillations of the toggle switch, leading to the observed high-amplitude oscillations of AtGRP7 mRNA.
PLoS Computational Biology
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI


Schmal C, Reimann P, Staiger D. A Circadian Clock-Regulated Toggle Switch Explains AtGRP7 and AtGRP8 Oscillations in Arabidopsis thaliana. PLoS Computational Biology. 2013;9(3): e1002986.
Schmal, C., Reimann, P., & Staiger, D. (2013). A Circadian Clock-Regulated Toggle Switch Explains AtGRP7 and AtGRP8 Oscillations in Arabidopsis thaliana. PLoS Computational Biology, 9(3), e1002986. doi:10.1371/journal.pcbi.1002986
Schmal, Christoph, Reimann, Peter, and Staiger, Dorothee. 2013. “A Circadian Clock-Regulated Toggle Switch Explains AtGRP7 and AtGRP8 Oscillations in Arabidopsis thaliana”. PLoS Computational Biology 9 (3): e1002986.
Schmal, C., Reimann, P., and Staiger, D. (2013). A Circadian Clock-Regulated Toggle Switch Explains AtGRP7 and AtGRP8 Oscillations in Arabidopsis thaliana. PLoS Computational Biology 9:e1002986.
Schmal, C., Reimann, P., & Staiger, D., 2013. A Circadian Clock-Regulated Toggle Switch Explains AtGRP7 and AtGRP8 Oscillations in Arabidopsis thaliana. PLoS Computational Biology, 9(3): e1002986.
C. Schmal, P. Reimann, and D. Staiger, “A Circadian Clock-Regulated Toggle Switch Explains AtGRP7 and AtGRP8 Oscillations in Arabidopsis thaliana”, PLoS Computational Biology, vol. 9, 2013, : e1002986.
Schmal, C., Reimann, P., Staiger, D.: A Circadian Clock-Regulated Toggle Switch Explains AtGRP7 and AtGRP8 Oscillations in Arabidopsis thaliana. PLoS Computational Biology. 9, : e1002986 (2013).
Schmal, Christoph, Reimann, Peter, and Staiger, Dorothee. “A Circadian Clock-Regulated Toggle Switch Explains AtGRP7 and AtGRP8 Oscillations in Arabidopsis thaliana”. PLoS Computational Biology 9.3 (2013): e1002986.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

24 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

On the move through time - a historical review of plant clock research.
Johansson M, Köster T., Plant Biol (Stuttg) 21 Suppl 1(), 2019
PMID: 29607587
The Plant Circadian Oscillator.
McClung CR., Biology (Basel) 8(1), 2019
PMID: 30870980
An Inactivation Switch Enables Rhythms in a Neurospora Clock Model.
Upadhyay A, Brunner M, Herzel H., Int J Mol Sci 20(12), 2019
PMID: 31248072
Beyond Transcription: Fine-Tuning of Circadian Timekeeping by Post-Transcriptional Regulation.
Mateos JL, de Leone MJ, Torchio J, Reichel M, Staiger D., Genes (Basel) 9(12), 2018
PMID: 30544736
Roles of pre-mRNA splicing and polyadenylation in plant development.
Deng X, Cao X., Curr Opin Plant Biol 35(), 2017
PMID: 27866125
RNA-Binding Proteins Revisited - The Emerging Arabidopsis mRNA Interactome.
Köster T, Marondedze C, Meyer K, Staiger D., Trends Plant Sci 22(6), 2017
PMID: 28412036
mRNA Interactome Capture from Plant Protoplasts.
Zhang Z, Boonen K, Li M, Geuten K., J Vis Exp (125), 2017
PMID: 28784956
Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7.
Meyer K, Köster T, Nolte C, Weinholdt C, Lewinski M, Grosse I, Staiger D., Genome Biol 18(1), 2017
PMID: 29084609
Identification of potential cargo proteins of transportin protein AtTRN1 in Arabidopsis thaliana.
Yan B, Wang X, Wang Z, Chen N, Mu C, Mao K, Han L, Zhang W, Liu H., Plant Cell Rep 35(3), 2016
PMID: 26650834
RNA Binding Proteins RZ-1B and RZ-1C Play Critical Roles in Regulating Pre-mRNA Splicing and Gene Expression during Development in Arabidopsis.
Wu Z, Zhu D, Lin X, Miao J, Gu L, Deng X, Yang Q, Sun K, Zhu D, Cao X, Tsuge T, Dean C, Aoyama T, Gu H, Qu LJ., Plant Cell 28(1), 2016
PMID: 26721863
A Compact Model for the Complex Plant Circadian Clock.
De Caluwé J, Xiao Q, Hermans C, Verbruggen N, Leloup JC, Gonze D., Front Plant Sci 7(), 2016
PMID: 26904049
Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold.
Zhu X, Bührer C, Wellmann S., Cell Mol Life Sci 73(20), 2016
PMID: 27147467
Circadian Profiling of the Arabidopsis Proteome Using 2D-DIGE.
Choudhary MK, Nomura Y, Shi H, Nakagami H, Somers DE., Front Plant Sci 7(), 2016
PMID: 27462335
UV crosslinked mRNA-binding proteins captured from leaf mesophyll protoplasts.
Zhang Z, Boonen K, Ferrari P, Schoofs L, Janssens E, van Noort V, Rolland F, Geuten K., Plant Methods 12(), 2016
PMID: 27822292
Time to flower: interplay between photoperiod and the circadian clock.
Johansson M, Staiger D., J Exp Bot 66(3), 2015
PMID: 25371508
Rhythmic control of mRNA stability modulates circadian amplitude of mouse Period3 mRNA.
Kim SH, Lee KH, Kim DY, Kwak E, Kim S, Kim KT., J Neurochem 132(6), 2015
PMID: 25581122
RNA around the clock - regulation at the RNA level in biological timing.
Nolte C, Staiger D., Front Plant Sci 6(), 2015
PMID: 25999975
The circadian clock goes genomic.
Staiger D, Shin J, Johansson M, Davis SJ., Genome Biol 14(6), 2013
PMID: 23796230

75 References

Daten bereitgestellt von Europe PubMed Central.

The circadian system in higher plants.
Harmer SL., Annu Rev Plant Biol 60(), 2009
PMID: 19575587
Clocks not winding down: unravelling circadian networks.
Zhang EE, Kay SA., Nat. Rev. Mol. Cell Biol. 11(11), 2010
PMID: 20966970
Circadian rhythms confer a higher level of fitness to Arabidopsis plants.
Green RM, Tingay S, Wang ZY, Tobin EM., Plant Physiol. 129(2), 2002
PMID: 12068102
Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage.
Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AA., Science 309(5734), 2005
PMID: 16040710
Complexity in the wiring and regulation of plant circadian networks.
Nagel DH, Kay SA., Curr. Biol. 22(16), 2012
PMID: 22917516
Extension of a genetic network model by iterative experimentation and mathematical analysis.
Locke JC, Southern MM, Kozma-Bognar L, Hibberd V, Brown PE, Turner MS, Millar AJ., Mol. Syst. Biol. 1(), 2005
PMID: 16729048
A novel computational model of the circadian clock in Arabidopsis that incorporates PRR7 and PRR9.
Zeilinger MN, Farre EM, Taylor SR, Kay SA, Doyle FJ 3rd., Mol. Syst. Biol. 2(), 2006
PMID: 17102803
Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana.
Locke JC, Kozma-Bognar L, Gould PD, Feher B, Kevei E, Nagy F, Turner MS, Hall A, Millar AJ., Mol. Syst. Biol. 2(), 2006
PMID: 17102804
Data assimilation constrains new connections and components in a complex, eukaryotic circadian clock model.
Pokhilko A, Hodge SK, Stratford K, Knox K, Edwards KD, Thomson AW, Mizuno T, Millar AJ., Mol. Syst. Biol. 6(), 2010
PMID: 20865009
The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose
The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops.
Pokhilko A, Fernandez AP, Edwards KD, Southern MM, Halliday KJ, Millar AJ., Mol. Syst. Biol. 8(), 2012
PMID: 22395476
Integrating ELF4 into the circadian system through combined structural and functional studies.
Kolmos E, Nowak M, Werner M, Fischer K, Schwarz G, Mathews S, Schoof H, Nagy F, Bujnicki JM, Davis SJ., HFSP J 3(5), 2009
PMID: 20357892
Circadian oscillations of cytosolic and chloroplastic free calcium in plants.
Johnson CH, Knight MR, Kondo T, Masson P, Sedbrook J, Haley A, Trewavas A, Masson PH., Science 269(5232), 1995
PMID: 7569925
All in good time: the Arabidopsis circadian clock.
Barak S, Tobin EM, Andronis C, Sugano S, Green RM., Trends Plant Sci. 5(12), 2000
PMID: 11120473
Living by the calendar: how plants know when to flower.
Yanovsky MJ, Kay SA., Nat. Rev. Mol. Cell Biol. 4(4), 2003
PMID: 12671649

Pittendrigh C, Bruce V, Kaus P., Proc. Natl. Acad. Sci. U.S.A. 44(9), 1958
PMID: 16590298
AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana.
Heintzen C, Nater M, Apel K, Staiger D., Proc. Natl. Acad. Sci. U.S.A. 94(16), 1997
PMID: 9238008
The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching, and promoter analysis.
Mockler TC, Michael TP, Priest HD, Shen R, Sullivan CM, Givan SA, McEntee C, Kay SA, Chory J., Cold Spring Harb. Symp. Quant. Biol. 72(), 2007
PMID: 18419293
The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering.
Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carre IA, Coupland G., Cell 93(7), 1998
PMID: 9657154
Changes in conformational dynamics of mRNA upon AtGRP7 binding studied by fluorescence correlation spectroscopy.
Schuttpelz M, Schoning JC, Doose S, Neuweiler H, Peters E, Staiger D, Sauer M., J. Am. Chem. Soc. 130(29), 2008
PMID: 18576621
An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana.
Streitner C, Koster T, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D., Nucleic Acids Res. 40(22), 2012
PMID: 23042250
Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7.
Streitner C, Hennig L, Korneli C, Staiger D., BMC Plant Biol. 10(), 2010
PMID: 20946635
The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana.
Streitner C, Danisman S, Wehrle F, Schoning JC, Alfano JR, Staiger D., Plant J. 56(2), 2008
PMID: 18573194
A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity.
Fu ZQ, Guo M, Jeong BR, Tian F, Elthon TE, Cerny RL, Staiger D, Alfano JR., Nature 447(7142), 2007
PMID: 17450127
Structure function analysis of an ADP-ribosyltransferase type III effector and its RNA-binding target in plant immunity.
Jeong BR, Lin Y, Joe A, Guo M, Korneli C, Yang H, Wang P, Yu M, Cerny RL, Staiger D, Alfano JR, Xu Y., J. Biol. Chem. 286(50), 2011
PMID: 22013065
AtGRP7 is involved in the regulation of abscisic acid and stress responses in Arabidopsis.
Cao S, Jiang L, Song S, Jing R, Xu G., Cell. Mol. Biol. Lett. 11(4), 2006
PMID: 17001447
A proteomic analysis of oligo(dT)-bound mRNP containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and ATGRP8.
Schmidt F, Marnef A, Cheung MK, Wilson I, Hancock J, Staiger D, Ladomery M., Mol. Biol. Rep. 37(2), 2009
PMID: 19672695
Prediction of photoperiodic regulators from quantitative gene circuit models.
Salazar JD, Saithong T, Brown PE, Foreman J, Locke JC, Halliday KJ, Carre IA, Rand DA, Millar AJ., Cell 139(6), 2009
PMID: 20005809
Arabidopsis transportin1 is the nuclear import receptor for the circadian clock-regulated RNA-binding protein AtGRP7.
Ziemienowicz A, Haasen D, Staiger D, Merkle T., Plant Mol. Biol. 53(1-2), 2003
PMID: 14756317
Reversible photoswitchable DRONPA-s monitors nucleocytoplasmic transport of an RNA-Binding protein in transgenic plants
A simplex method for function minimization
Identification of an Arabidopsis cDNA encoding a novel glycine rich RNA-binding protein (accession no. AJ002892) and mapping of the gene family onto the Arabidopsis physical map
The electronic Plant Gene Register.
AUTHOR UNKNOWN, Plant Physiol. 117(4), 1998
PMID: 9750105
ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis.
Somers DE, Schultz TF, Milnamow M, Kay SA., Cell 101(3), 2000
PMID: 10847686
Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock.
Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA., Science 293(5531), 2001
PMID: 11486091
How to make a biological switch.
Cherry JL, Adler FR., J. Theor. Biol. 203(2), 2000
PMID: 10704297
Construction of a genetic toggle switch in Escherichia coli.
Gardner TS, Cantor CR, Collins JJ., Nature 403(6767), 2000
PMID: 10659857
Coupling oscillations and switches in genetic networks.
Gonze D., BioSystems 99(1), 2009
PMID: 19735694
Saturation of enzyme kinetics in circadian clock models.
Kurosawa G, Iwasa Y., J. Biol. Rhythms 17(6), 2002
PMID: 12465890
Oscillations and temporal signalling in cells.
Tiana G, Krishna S, Pigolotti S, Jensen MH, Sneppen K., Phys Biol 4(2), 2007
PMID: 17664651
A robust two-gene oscillator at the core of Ostreococcus tauri circadian clock.
Morant PE, Thommen Q, Pfeuty B, Vandermoere C, Corellou F, Bouget FY, Lefranc M., Chaos 20(4), 2010
PMID: 21198120
How to achieve fast entrainment? The timescale to synchronization.
Granada AE, Herzel H., PLoS ONE 4(9), 2009
PMID: 19774087
Robust, tunable biological oscillations from interlinked positive and negative feedback loops.
Tsai TY, Choi YS, Ma W, Pomerening JR, Tang C, Ferrell JE Jr., Science 321(5885), 2008
PMID: 18599789
Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell.
Tyson JJ, Chen KC, Novak B., Curr. Opin. Cell Biol. 15(2), 2003
PMID: 12648679
LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis.
Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song HR, Carre IA, Coupland G., Dev. Cell 2(5), 2002
PMID: 12015970
Light-regulated translation mediates gated induction of the Arabidopsis clock protein LHY.
Kim JY, Song HR, Taylor BL, Carre IA., EMBO J. 22(4), 2003
PMID: 12574129
Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis.
Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G., Plant Cell 17(8), 2005
PMID: 16006578
Noise in gene expression: origins, consequences, and control.
Raser JM, O'Shea EK., Science 309(5743), 2005
PMID: 16179466
Noise in genetic and neural networks.
Swain PS, Longtin A., Chaos 16(2), 2006
PMID: 16822033
Stochastic resonance without external periodic force.
Gang H, Ditzinger T, Ning CZ, Haken H., Phys. Rev. Lett. 71(6), 1993
PMID: 10055373
Stochastic resonance in an autonomous system with a nonuniform limit cycle
Mechanisms of noise-resistance in genetic oscillators.
Vilar JM, Kueh HY, Barkai N, Leibler S., Proc. Natl. Acad. Sci. U.S.A. 99(9), 2002
PMID: 11972055
Functional independence of circadian clocks that regulate plant gene expression.
Thain SC, Hall A, Millar AJ., Curr. Biol. 10(16), 2000
PMID: 10985381
Synchronization of plant circadian oscillators with a phase delay effect of the vein network.
Fukuda H, Nakamichi N, Hisatsune M, Murase H, Mizuno T., Phys. Rev. Lett. 99(9), 2007
PMID: 17931039
Spontaneous spatiotemporal waves of gene expression from biological clocks in the leaf
Genome-wide mapping of alternative splicing in Arabidopsis thaliana.
Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW, Fox SE, Wong WK, Mockler TC., Genome Res. 20(1), 2009
PMID: 19858364
Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes.
James AB, Syed NH, Bordage S, Marshall J, Nimmo GA, Jenkins GI, Herzyk P, Brown JW, Nimmo HG., Plant Cell 24(3), 2012
PMID: 22408072
Determining degradation and synthesis rates of arabidopsis proteins using the kinetics of progressive 15N labeling of two-dimensional gel-separated protein spots
Global parameter search reveals design principles of the mammalian circadian clock.
Locke JC, Westermark PO, Kramer A, Herzel H., BMC Syst Biol 2(), 2008
PMID: 18312618
Spotlight on post-transcriptional control in the circadian system.
Staiger D, Koster T., Cell. Mol. Life Sci. 68(1), 2010
PMID: 20803230
Orchestrated transcription of key pathways in Arabidopsis by the circadian clock.
Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA., Science 290(5499), 2000
PMID: 11118138
FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock.
Edwards KD, Anderson PE, Hall A, Salathia NS, Locke JC, Lynn JR, Straume M, Smith JQ, Millar AJ., Plant Cell 18(3), 2006
PMID: 16473970

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 23555221
PubMed | Europe PMC

Suchen in

Google Scholar