MicroRNAs in pluripotency, reprogramming and cell fate induction

Lüningschrör P, Hauser S, Kaltschmidt B, Kaltschmidt C (2013)
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1833(8): 1894-1903.

Zeitschriftenaufsatz | Veröffentlicht| Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Erscheinungsjahr
2013
Zeitschriftentitel
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Band
1833
Ausgabe
8
Seite(n)
1894-1903
ISSN
0167-4889
Page URI
https://pub.uni-bielefeld.de/record/2567017

Zitieren

Lüningschrör P, Hauser S, Kaltschmidt B, Kaltschmidt C. MicroRNAs in pluripotency, reprogramming and cell fate induction. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2013;1833(8):1894-1903.
Lüningschrör, P., Hauser, S., Kaltschmidt, B., & Kaltschmidt, C. (2013). MicroRNAs in pluripotency, reprogramming and cell fate induction. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1833(8), 1894-1903. doi:10.1016/j.bbamcr.2013.03.025
Lüningschrör, P., Hauser, S., Kaltschmidt, B., and Kaltschmidt, C. (2013). MicroRNAs in pluripotency, reprogramming and cell fate induction. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1833, 1894-1903.
Lüningschrör, P., et al., 2013. MicroRNAs in pluripotency, reprogramming and cell fate induction. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1833(8), p 1894-1903.
P. Lüningschrör, et al., “MicroRNAs in pluripotency, reprogramming and cell fate induction”, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol. 1833, 2013, pp. 1894-1903.
Lüningschrör, P., Hauser, S., Kaltschmidt, B., Kaltschmidt, C.: MicroRNAs in pluripotency, reprogramming and cell fate induction. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1833, 1894-1903 (2013).
Lüningschrör, Patrick, Hauser, Stefan, Kaltschmidt, Barbara, and Kaltschmidt, Christian. “MicroRNAs in pluripotency, reprogramming and cell fate induction”. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1833.8 (2013): 1894-1903.

31 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A Role for NF-κB in Organ Specific Cancer and Cancer Stem Cells.
Kaltschmidt C, Banz-Jansen C, Benhidjeb T, Beshay M, Förster C, Greiner J, Hamelmann E, Jorch N, Mertzlufft F, Pfitzenmaier J, Simon M, Schulte Am Esch J, Vordemvenne T, Wähnert D, Weissinger F, Wilkens L, Kaltschmidt B., Cancers (Basel) 11(5), 2019
PMID: 31083587
MiRNA Influences in Neuroblast Modulation: An Introspective Analysis.
Zammit V, Baron B, Ayers D., Genes (Basel) 9(1), 2018
PMID: 29315268
miR-7 Modulates hESC Differentiation into Insulin-Producing Beta-like Cells and Contributes to Cell Maturation.
López-Beas J, Capilla-González V, Aguilera Y, Mellado N, Lachaud CC, Martín F, Smani T, Soria B, Hmadcha A., Mol Ther Nucleic Acids 12(), 2018
PMID: 30195784
Incomplete cellular reprogramming of colorectal cancer cells elicits an epithelial/mesenchymal hybrid phenotype.
Hiew MSY, Cheng HP, Huang CJ, Chong KY, Cheong SK, Choo KB, Kamarul T., J Biomed Sci 25(1), 2018
PMID: 30025541
MiRNA influences in mesenchymal stem cell commitment to neuroblast lineage development.
Zammit V, Brincat MR, Cassar V, Muscat-Baron Y, Ayers D, Baron B., Noncoding RNA Res 3(4), 2018
PMID: 30533571
MicroRNA-Mediated Reprogramming of Somatic Cells into Neural Stem Cells or Neurons.
Yang H, Zhang L, An J, Zhang Q, Liu C, He B, Hao DJ., Mol Neurobiol 54(2), 2017
PMID: 27660263
Epigenetics of cell fate reprogramming and its implications for neurological disorders modelling.
Grzybek M, Golonko A, Walczak M, Lisowski P., Neurobiol Dis 99(), 2017
PMID: 27890672
Inhibition of miRNA-212/132 improves the reprogramming of fibroblasts into induced pluripotent stem cells by de-repressing important epigenetic remodelling factors.
Pfaff N, Liebhaber S, Möbus S, Beh-Pajooh A, Fiedler J, Pfanne A, Schambach A, Thum T, Cantz T, Moritz T., Stem Cell Res 20(), 2017
PMID: 28314201
miR-290 contributes to the low abundance of cyclin D1 protein in mouse embryonic stem cells.
Gong Z, Wang D, Zhu S, Xia Y, Fan C, Zhao B, Jin Y., Acta Biochim Biophys Sin (Shanghai) 49(7), 2017
PMID: 28510621
Steering Against Wind: A New Network of NamiRNAs and Enhancers.
Liang Y, Zou Q, Yu W., Genomics Proteomics Bioinformatics 15(5), 2017
PMID: 28882787
Gadd45a opens up the promoter regions of miR-295 facilitating pluripotency induction.
Li L, Chen K, Wu Y, Long Q, Zhao D, Ma B, Pei D, Liu X., Cell Death Dis 8(10), 2017
PMID: 29022923
The CCR4-NOT deadenylase activity contributes to generation of induced pluripotent stem cells.
Zukeran A, Takahashi A, Takaoka S, Mohamed HMA, Suzuki T, Ikematsu S, Yamamoto T., Biochem Biophys Res Commun 474(2), 2016
PMID: 27037025
DIANA-mirExTra v2.0: Uncovering microRNAs and transcription factors with crucial roles in NGS expression data.
Vlachos IS, Vergoulis T, Paraskevopoulou MD, Lykokanellos F, Georgakilas G, Georgiou P, Chatzopoulos S, Karagkouni D, Christodoulou F, Dalamagas T, Hatzigeorgiou AG., Nucleic Acids Res 44(w1), 2016
PMID: 27207881
Asymmetric Regulation of Peripheral Genes by Two Transcriptional Regulatory Networks.
Li JR, Suzuki T, Nishimura H, Kishima M, Maeda S, Suzuki H., PLoS One 11(8), 2016
PMID: 27483142
Selective microRNA-Offset RNA expression in human embryonic stem cells.
Asikainen S, Heikkinen L, Juhila J, Holm F, Weltner J, Trokovic R, Mikkola M, Toivonen S, Balboa D, Lampela R, Icay K, Tuuri T, Otonkoski T, Wong G, Hovatta O., PLoS One 10(3), 2015
PMID: 25822230
Cell Pluripotency Levels Associated with Imprinted Genes in Human.
Yuan L, Tang X, Zhang B, Ding G., Comput Math Methods Med 2015(), 2015
PMID: 26504487
Stage-Specific miRs in Chondrocyte Maturation: Differentiation-Dependent and Hypertrophy-Related miR Clusters and the miR-181 Family.
Gabler J, Ruetze M, Kynast KL, Grossner T, Diederichs S, Richter W., Tissue Eng Part A 21(23-24), 2015
PMID: 26431739
Concise review: new frontiers in microRNA-based tissue regeneration.
Frith JE, Porrello ER, Cooper-White JJ., Stem Cells Transl Med 3(8), 2014
PMID: 24873861
microRNAs and Cardiac Cell Fate.
Piubelli C, Meraviglia V, Pompilio G, D'Alessandra Y, Colombo GI, Rossini A., Cells 3(3), 2014
PMID: 25100020
Profiling the microRNA Expression in Human iPS and iPS-derived Retinal Pigment Epithelium.
Wang HC, Greene WA, Kaini RR, Shen-Gunther J, Chen HI, Cai H, Wang Y., Cancer Inform 13(suppl 5), 2014
PMID: 25392691
Small RNA changes en route to distinct cellular states of induced pluripotency.
Clancy JL, Patel HR, Hussein SM, Tonge PD, Cloonan N, Corso AJ, Li M, Lee DS, Shin JY, Wong JJ, Bailey CG, Benevento M, Munoz J, Chuah A, Wood D, Rasko JE, Heck AJ, Grimmond SM, Rogers IM, Seo JS, Wells CA, Puri MC, Nagy A, Preiss T., Nat Commun 5(), 2014
PMID: 25494340
The presence, role and clinical use of spermatozoal RNAs.
Jodar M, Selvaraju S, Sendler E, Diamond MP, Krawetz SA, Reproductive Medicine Network., Hum Reprod Update 19(6), 2013
PMID: 23856356

138 References

Daten bereitgestellt von Europe PubMed Central.

Establishment in culture of pluripotential cells from mouse embryos.
Evans MJ, Kaufman MH., Nature 292(5819), 1981
PMID: 7242681
Cytoplasmic activation of human nuclear genes in stable heterocaryons.
Blau HM, Chiu CP, Webster C., Cell 32(4), 1983
PMID: 6839359
Sheep cloned by nuclear transfer from a cultured cell line.
Campbell KH, McWhir J, Ritchie WA, Wilmut I., Nature 380(6569), 1996
PMID: 8598906
Mice cloned from olfactory sensory neurons.
Eggan K, Baldwin K, Tackett M, Osborne J, Gogos J, Chess A, Axel R, Jaenisch R., Nature 428(6978), 2004
PMID: 14990966
Mechanisms of nuclear reprogramming by eggs and oocytes: a deterministic process?
Jullien J, Pasque V, Halley-Stott RP, Miyamoto K, Gurdon JB., Nat. Rev. Mol. Cell Biol. 12(7), 2011
PMID: 21697902
Nuclear reprogramming to a pluripotent state by three approaches.
Yamanaka S, Blau HM., Nature 465(7299), 2010
PMID: 20535199
Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives.
Nazor KL, Altun G, Lynch C, Tran H, Harness JV, Slavin I, Garitaonandia I, Muller FJ, Wang YC, Boscolo FS, Fakunle E, Dumevska B, Lee S, Park HS, Olee T, D'Lima DD, Semechkin R, Parast MM, Galat V, Laslett AL, Schmidt U, Keirstead HS, Loring JF, Laurent LC., Cell Stem Cell 10(5), 2012
PMID: 22560082
Induced pluripotent stem cells: epigenetic memories and practical implications.
Sullivan GJ, Bai Y, Fletcher J, Wilmut I., Mol. Hum. Reprod. 16(12), 2010
PMID: 21059705
Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells.
Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, Apostolou E, Stadtfeld M, Li Y, Shioda T, Natesan S, Wagers AJ, Melnick A, Evans T, Hochedlinger K., Nat. Biotechnol. 28(8), 2010
PMID: 20644536
Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells.
Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, Natesan S, Kono T, Shioda T, Hochedlinger K., Nature 465(7295), 2010
PMID: 20418860
Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells.
Carey BW, Markoulaki S, Hanna JH, Faddah DA, Buganim Y, Kim J, Ganz K, Steine EJ, Cassady JP, Creyghton MP, Welstead GG, Gao Q, Jaenisch R., Cell Stem Cell 9(6), 2011
PMID: 22136932
Stem cells: iPS cells under attack.
Apostolou E, Hochedlinger K., Nature 474(7350), 2011
PMID: 21654792
Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease.
Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G, Antonacci C, Buch A, Yang L, Beal MF, Surmeier DJ, Kordower JH, Tabar V, Studer L., Nature 480(7378), 2011
PMID: 22056989
Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts.
Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O'Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE., Nat. Biotechnol. 25(9), 2007
PMID: 17721512
Multipotent cell lineages in early mouse development depend on SOX2 function.
Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R., Genes Dev. 17(1), 2003
PMID: 12514105
The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells.
Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S., Cell 113(5), 2003
PMID: 12787504
Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues.
Hanna JH, Saha K, Jaenisch R., Cell 143(4), 2010
PMID: 21074044
Chromatin connections to pluripotency and cellular reprogramming.
Orkin SH, Hochedlinger K., Cell 145(6), 2011
PMID: 21663790
Regulatory networks in embryo-derived pluripotent stem cells.
Boiani M, Scholer HR., Nat. Rev. Mol. Cell Biol. 6(11), 2005
PMID: 16227977
The transcriptional and signalling networks of pluripotency.
Ng HH, Surani MA., Nat. Cell Biol. 13(5), 2011
PMID: 21540844
Directing reprogramming to pluripotency by transcription factors.
Adachi K, Scholer HR., Curr. Opin. Genet. Dev. 22(5), 2012
PMID: 22868173
Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells.
Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S, Guenther MG, Johnston WK, Wernig M, Newman J, Calabrese JM, Dennis LM, Volkert TL, Gupta S, Love J, Hannett N, Sharp PA, Bartel DP, Jaenisch R, Young RA., Cell 134(3), 2008
PMID: 18692474
Control of developmental timing by micrornas and their targets.
Pasquinelli AE, Ruvkun G., Annu. Rev. Cell Dev. Biol. 18(), 2002
PMID: 12142272
The Drosha-DGCR8 complex in primary microRNA processing.
Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN., Genes Dev. 18(24), 2004
PMID: 15574589
The Microprocessor complex mediates the genesis of microRNAs.
Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R., Nature 432(7014), 2004
PMID: 15531877
Processing of primary microRNAs by the Microprocessor complex.
Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ., Nature 432(7014), 2004
PMID: 15531879
Nuclear export of microRNA precursors.
Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U., Science 303(5654), 2003
PMID: 14631048
Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs.
Yi R, Qin Y, Macara IG, Cullen BR., Genes Dev. 17(24), 2003
PMID: 14681208
Mirtrons: microRNA biogenesis via splicing.
Westholm JO, Lai EC., Biochimie 93(11), 2011
PMID: 21712066
A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA.
Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD., Science 293(5531), 2001
PMID: 11452083
Control of mesenchymal lineage progression by microRNAs targeting skeletal gene regulators Trps1 and Runx2.
Zhang Y, Xie RL, Gordon J, LeBlanc K, Stein JL, Lian JB, van Wijnen AJ, Stein GS., J. Biol. Chem. 287(26), 2012
PMID: 22544738
Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP.
Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T., Cell 141(1), 2010
PMID: 20371350
MicroRNA targeting specificity in mammals: determinants beyond seed pairing.
Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP., Mol. Cell 27(1), 2007
PMID: 17612493
Desperately seeking microRNA targets.
Thomas M, Lieberman J, Lal A., Nat. Struct. Mol. Biol. 17(10), 2010
PMID: 20924405
Gene silencing by microRNAs: contributions of translational repression and mRNA decay.
Huntzinger E, Izaurralde E., Nat. Rev. Genet. 12(2), 2011
PMID: 21245828
The impact of microRNAs on protein output.
Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP., Nature 455(7209), 2008
PMID: 18668037
Mammalian microRNAs predominantly act to decrease target mRNA levels.
Guo H, Ingolia NT, Weissman JS, Bartel DP., Nature 466(7308), 2010
PMID: 20703300
Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA.
Hendrickson DG, Hogan DJ, McCullough HL, Myers JW, Herschlag D, Ferrell JE, Brown PO., PLoS Biol. 7(11), 2009
PMID: 19901979
Widespread changes in protein synthesis induced by microRNAs.
Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N., Nature 455(7209), 2008
PMID: 18668040
Embryonic stem cell-specific MicroRNAs.
Houbaviy HB, Murray MF, Sharp PA., Dev. Cell 5(2), 2003
PMID: 12919684
A mammalian microRNA expression atlas based on small RNA library sequencing.
Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foa R, Schliwka J, Fuchs U, Novosel A, Muller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T., Cell 129(7), 2007
PMID: 17604727
Comprehensive microRNA profiling reveals a unique human embryonic stem cell signature dominated by a single seed sequence.
Laurent LC, Chen J, Ulitsky I, Mueller FJ, Lu C, Shamir R, Fan JB, Loring JF., Stem Cells 26(6), 2008
PMID: 18403753
Human embryonic stem cells express a unique set of microRNAs.
Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, Cha KY, Chung HM, Yoon HS, Moon SY, Kim VN, Kim KS., Dev. Biol. 270(2), 2004
PMID: 15183728
MicroRNAs in embryonic stem cells.
Wang Y, Keys DN, Au-Young JK, Chen C., J. Cell. Physiol. 218(2), 2009
PMID: 18821562
MicroRNAs: key regulators of stem cells.
Gangaraju VK, Lin H., Nat. Rev. Mol. Cell Biol. 10(2), 2009
PMID: 19165214
DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal.
Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R., Nat. Genet. 39(3), 2007
PMID: 17259983
Characterization of Dicer-deficient murine embryonic stem cells.
Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ., Proc. Natl. Acad. Sci. U.S.A. 102(34), 2005
PMID: 16099834
Dicer is essential for mouse development.
Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ., Nat. Genet. 35(3), 2003
PMID: 14528307
Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing.
Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K., Genes Dev. 19(4), 2005
PMID: 15713842
Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs.
Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R., Genes Dev. 22(20), 2008
PMID: 18923076
RNA sequence analysis defines Dicer's role in mouse embryonic stem cells.
Calabrese JM, Seila AC, Yeo GW, Sharp PA., Proc. Natl. Acad. Sci. U.S.A. 104(46), 2007
PMID: 17989215
Selective blockade of microRNA processing by Lin28.
Viswanathan SR, Daley GQ, Gregory RI., Science 320(5872), 2008
PMID: 18292307
A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment.
Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl EE, Nitsch R, Wulczyn FG., Nat. Cell Biol. 10(8), 2008
PMID: 18604195
Opposing microRNA families regulate self-renewal in mouse embryonic stem cells.
Melton C, Judson RL, Blelloch R., Nature 463(7281), 2010
PMID: 20054295
Characterization of a highly variable eutherian microRNA gene.
Houbaviy HB, Dennis L, Jaenisch R, Sharp PA., RNA 11(8), 2005
PMID: 15987809
The miR-290-295 cluster promotes pluripotency maintenance by regulating cell cycle phase distribution in mouse embryonic stem cells.
Lichner Z, Pall E, Kerekes A, Pallinger E, Maraghechi P, Bosze Z, Gocza E., Differentiation 81(1), 2010
PMID: 20864249
MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells.
Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel CG, Zavolan M, Svoboda P, Filipowicz W., Nat. Struct. Mol. Biol. 15(3), 2008
PMID: 18311153
A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases.
Benetti R, Gonzalo S, Jaco I, Munoz P, Gonzalez S, Schoeftner S, Murchison E, Andl T, Chen T, Klatt P, Li E, Serrano M, Millar S, Hannon G, Blasco MA., Nat. Struct. Mol. Biol. 15(9), 2008
PMID: 18769471
Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin.
Gonzalo S, Garcia-Cao M, Fraga MF, Schotta G, Peters AH, Cotter SE, Eguia R, Dean DC, Esteller M, Jenuwein T, Blasco MA., Nat. Cell Biol. 7(4), 2005
PMID: 15750587
Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation.
Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R., Nat. Genet. 40(12), 2008
PMID: 18978791
A latent pro-survival function for the mir-290-295 cluster in mouse embryonic stem cells.
Zheng GX, Ravi A, Calabrese JM, Medeiros LA, Kirak O, Dennis LM, Jaenisch R, Burge CB, Sharp PA., PLoS Genet. 7(5), 2011
PMID: 21573140
Mir-290-295 deficiency in mice results in partially penetrant embryonic lethality and germ cell defects.
Medeiros LA, Dennis LM, Gill ME, Houbaviy H, Markoulaki S, Fu D, White AC, Kirak O, Sharp PA, Page DC, Jaenisch R., Proc. Natl. Acad. Sci. U.S.A. 108(34), 2011
PMID: 21844366
In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state.
Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R., Nature 448(7151), 2007
PMID: 17554336
Generation of germline-competent induced pluripotent stem cells.
Okita K, Ichisaka T, Yamanaka S., Nature 448(7151), 2007
PMID: 17554338
Adult mice generated from induced pluripotent stem cells.
Boland MJ, Hazen JL, Nazor KL, Rodriguez AR, Gifford W, Martin G, Kupriyanov S, Baldwin KK., Nature 461(7260), 2009
PMID: 19672243
iPS cells can support full-term development of tetraploid blastocyst-complemented embryos.
Kang L, Wang J, Zhang Y, Kou Z, Gao S., Cell Stem Cell 5(2), 2009
PMID: 19631602
iPS cells produce viable mice through tetraploid complementation.
Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, Hao J, Guo CL, Ma QW, Wang L, Zeng F, Zhou Q., Nature 461(7260), 2009
PMID: 19672241
Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb.
Feng B, Jiang J, Kraus P, Ng JH, Heng JC, Chan YS, Yaw LP, Zhang W, Loh YH, Han J, Vega VB, Cacheux-Rataboul V, Lim B, Lufkin T, Ng HH., Nat. Cell Biol. 11(2), 2009
PMID: 19136965
The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells.
Heng JC, Feng B, Han J, Jiang J, Kraus P, Ng JH, Orlov YL, Huss M, Yang L, Lufkin T, Lim B, Ng HH., Cell Stem Cell 6(2), 2010
PMID: 20096661
E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming.
Redmer T, Diecke S, Grigoryan T, Quiroga-Negreira A, Birchmeier W, Besser D., EMBO Rep. 12(7), 2011
PMID: 21617704
Induced pluripotent stem cell lines derived from human somatic cells.
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA., Science 318(5858), 2007
PMID: 18029452
Direct reprogramming of fibroblasts into epiblast stem cells.
Han DW, Greber B, Wu G, Tapia N, Arauzo-Bravo MJ, Ko K, Bernemann C, Stehling M, Scholer HR., Nat. Cell Biol. 13(1), 2010
PMID: 21131959
A unique Oct4 interface is crucial for reprogramming to pluripotency.
Esch D, Vahokoski J, Groves MR, Pogenberg V, Cojocaru V, Vom Bruch H, Han D, Drexler HC, Arauzo-Bravo MJ, Ng CK, Jauch R, Wilmanns M, Scholer HR., Nat. Cell Biol. 15(3), 2013
PMID: 23376973
A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog.
Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D, Loh KM, Carter AC, Di Giorgio FP, Koszka K, Huangfu D, Akutsu H, Liu DR, Rubin LL, Eggan K., Cell Stem Cell 5(5), 2009
PMID: 19818703
Embryonic stem cell-specific microRNAs promote induced pluripotency.
Judson RL, Babiarz JE, Venere M, Blelloch R., Nat. Biotechnol. 27(5), 2009
PMID: 19363475
Small RNA-mediated regulation of iPS cell generation.
Li Z, Yang CS, Nakashima K, Rana TM., EMBO J. 30(5), 2011
PMID: 21285944
Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming.
Samavarchi-Tehrani P, Golipour A, David L, Sung HK, Beyer TA, Datti A, Woltjen K, Nagy A, Wrana JL., Cell Stem Cell 7(1), 2010
PMID: 20621051
Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells.
Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R, Blelloch R., Nat. Biotechnol. 29(5), 2011
PMID: 21490602
Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency.
Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ, Epstein JA, Morrisey EE., Cell Stem Cell 8(4), 2011
PMID: 21474102
Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state.
Lin SL, Chang DC, Chang-Lin S, Lin CH, Wu DT, Chen DT, Ying SY., RNA 14(10), 2008
PMID: 18755840
Reprogramming of mouse and human cells to pluripotency using mature microRNAs.
Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F, Saito T, Nishimura J, Takemasa I, Mizushima T, Ikeda M, Yamamoto H, Sekimoto M, Doki Y, Mori M., Cell Stem Cell 8(6), 2011
PMID: 21620789
MicroRNAs are indispensable for reprogramming mouse embryonic fibroblasts into induced stem cell-like cells.
Kim BM, Thier MC, Oh S, Sherwood R, Kanellopoulou C, Edenhofer F, Choi MY., PLoS ONE 7(6), 2012
PMID: 22737231
Epithelial-mesenchymal transitions in development and disease.
Thiery JP, Acloque H, Huang RY, Nieto MA., Cell 139(5), 2009
PMID: 19945376
A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition.
Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ., Cancer Res. 68(19), 2008
PMID: 18829540
The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1.
Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ., Nat. Cell Biol. 10(5), 2008
PMID: 18376396
miRNA screening reveals a new miRNA family stimulating iPS cell generation via regulation of Meox2.
Pfaff N, Fiedler J, Holzmann A, Schambach A, Moritz T, Cantz T, Thum T., EMBO Rep. 12(11), 2011
PMID: 21941297
microRNAs modulate iPS cell generation.
Yang CS, Li Z, Rana TM., RNA 17(8), 2011
PMID: 21693621
miR-34 miRNAs provide a barrier for somatic cell reprogramming.
Choi YJ, Lin CP, Ho JJ, He X, Okada N, Bu P, Zhong Y, Kim SY, Bennett MJ, Chen C, Ozturk A, Hicks GG, Hannon GJ, He L., Nat. Cell Biol. 13(11), 2011
PMID: 22020437
A microRNA component of the p53 tumour suppressor network.
He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ., Nature 447(7148), 2007
PMID: 17554337
Immortalization eliminates a roadblock during cellular reprogramming into iPS cells.
Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM, Khalil A, Rheinwald JG, Hochedlinger K., Nature 460(7259), 2009
PMID: 19668190
Linking the p53 tumour suppressor pathway to somatic cell reprogramming.
Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A, Wahl GM, Izpisua Belmonte JC., Nature 460(7259), 2009
PMID: 19668186
Suppression of induced pluripotent stem cell generation by the p53-p21 pathway.
Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S., Nature 460(7259), 2009
PMID: 19668191
miR-290 cluster modulates pluripotency by repressing canonical NF-κB signaling.
Luningschror P, Stocker B, Kaltschmidt B, Kaltschmidt C., Stem Cells 30(4), 2012
PMID: 22232084
How the Dorsal gradient works: insights from postgenome technologies.
Hong JW, Hendrix DA, Papatsenko D, Levine MS., Proc. Natl. Acad. Sci. U.S.A. 105(51), 2008
PMID: 19104040
A common plan for dorsoventral patterning in Bilateria.
De Robertis EM, Sasai Y., Nature 380(6569), 1996
PMID: 8598900
miR-125 potentiates early neural specification of human embryonic stem cells.
Boissart C, Nissan X, Giraud-Triboult K, Peschanski M, Benchoua A., Development 139(7), 2012
PMID: 22357933
Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling.
Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L., Nat. Biotechnol. 27(3), 2009
PMID: 19252484
MicroRNA-145 regulates human corneal epithelial differentiation.
Lee SK, Teng Y, Wong HK, Ng TK, Huang L, Lei P, Choy KW, Liu Y, Zhang M, Lam DS, Yam GH, Pang CP., PLoS ONE 6(6), 2011
PMID: 21701675
MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells.
Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS., Cell 137(4), 2009
PMID: 19409607
The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease.
Elia L, Quintavalle M, Zhang J, Contu R, Cossu L, Latronico MV, Peterson KL, Indolfi C, Catalucci D, Chen J, Courtneidge SA, Condorelli G., Cell Death Differ. 16(12), 2009
PMID: 19816508
miR-145 and miR-143 regulate smooth muscle cell fate and plasticity.
Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN, Srivastava D., Nature 460(7256), 2009
PMID: 19578358
miR-126 regulates angiogenic signaling and vascular integrity.
Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY, Srivastava D., Dev. Cell 15(2), 2008
PMID: 18694566
Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126.
Kuhnert F, Mancuso MR, Hampton J, Stankunas K, Asano T, Chen CZ, Kuo CJ., Development 135(24), 2008
PMID: 18987025
Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2.
Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D., Cell 129(2), 2007
PMID: 17397913
Variability in gene expression underlies incomplete penetrance.
Raj A, Rifkin SA, Andersen E, van Oudenaarden A., Nature 463(7283), 2010
PMID: 20164922
MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling.
Zhao C, Sun G, Li S, Lang MF, Yang S, Li W, Shi Y., Proc. Natl. Acad. Sci. U.S.A. 107(5), 2010
PMID: 20133835
Regulation of multiple target genes by miR-1 and miR-206 is pivotal for C2C12 myoblast differentiation.
Goljanek-Whysall K, Pais H, Rathjen T, Sweetman D, Dalmay T, Munsterberg A., J. Cell. Sci. 125(Pt 15), 2012
PMID: 22595520
MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4.
Xie C, Huang H, Sun X, Guo Y, Hamblin M, Ritchie RP, Garcia-Barrio MT, Zhang J, Chen YE., Stem Cells Dev. 20(2), 2010
PMID: 20799856
miR-7a regulation of Pax6 controls spatial origin of forebrain dopaminergic neurons.
de Chevigny A, Core N, Follert P, Gaudin M, Barbry P, Beclin C, Cremer H., Nat. Neurosci. 15(8), 2012
PMID: 22729175
The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease.
Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL., J. Neurosci. 28(53), 2008
PMID: 19118166
MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors.
Shibata M, Nakao H, Kiyonari H, Abe T, Aizawa S., J. Neurosci. 31(9), 2011
PMID: 21368052
MicroRNA-mediated switching of chromatin-remodelling complexes in neural development.
Yoo AS, Staahl BT, Chen L, Crabtree GR., Nature 460(7255), 2009
PMID: 19561591
TGF-β and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells.
Takahashi H, Kanno T, Nakayamada S, Hirahara K, Sciume G, Muljo SA, Kuchen S, Casellas R, Wei L, Kanno Y, O'Shea JJ., Nat. Immunol. 13(6), 2012
PMID: 22544395
MIR-23A microRNA cluster inhibits B-cell development.
Kong KY, Owens KS, Rogers JH, Mullenix J, Velu CS, Grimes HL, Dahl R., Exp. Hematol. 38(8), 2010
PMID: 20399246
miR-27b controls venous specification and tip cell fate.
Biyashev D, Veliceasa D, Topczewski J, Topczewska JM, Mizgirev I, Vinokour E, Reddi AL, Licht JD, Revskoy SY, Volpert OV., Blood 119(11), 2011
PMID: 22207734
MicroRNA-mediated conversion of human fibroblasts to neurons.
Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW, Crabtree GR., Nature 476(7359), 2011
PMID: 21753754
miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche.
Cheng LC, Pastrana E, Tavazoie M, Doetsch F., Nat. Neurosci. 12(4), 2009
PMID: 19287386
The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development.
Visvanathan J, Lee S, Lee B, Lee JW, Lee SK., Genes Dev. 21(7), 2007
PMID: 17403776
miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells.
Sun G, Ye P, Murai K, Lang MF, Li S, Zhang H, Li W, Fu C, Yin J, Wang A, Ma X, Shi Y., Nat Commun 2(), 2011
PMID: 22068596
miR669a and miR669q prevent skeletal muscle differentiation in postnatal cardiac progenitors.
Crippa S, Cassano M, Messina G, Galli D, Galvez BG, Curk T, Altomare C, Ronzoni F, Toelen J, Gijsbers R, Debyser Z, Janssens S, Zupan B, Zaza A, Cossu G, Sampaolesi M., J. Cell Biol. 193(7), 2011
PMID: 21708977
Material in PUB:
Dissertation, die diesen PUB Eintrag enthält

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23557785
PubMed | Europe PMC

Suchen in

Google Scholar