Proprotein Convertases Process and Thereby Inactivate Formylglycine-generating Enzyme

Ennemann E, Radhakrishnan K, Mariappan M, Wachs M, Pringle TH, Schmidt B, Dierks T (2013)
Journal of Biological Chemistry 288(8): 5828-5839.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Ennemann, EvaUniBi; Radhakrishnan, Karthikeyan; Mariappan, Malaiyalam; Wachs, Michaela; Pringle, Thomas H.; Schmidt, Bernhard; Dierks, ThomasUniBi
Abstract / Bemerkung
Formylglycine-generating enzyme (FGE) post-translationally converts a specific cysteine in newly synthesized sulfatases to formylglycine (FGly). FGly is the key catalytic residue of the sulfatase family, comprising 17 nonredundant enzymes in human that play essential roles in development and homeostasis. FGE, a resident protein of the endoplasmic reticulum, is also secreted. A major fraction of secreted FGE is N-terminally truncated, lacking residues 34-72. Here we demonstrate that this truncated form is generated intracellularly by limited proteolysis mediated by proprotein convertase(s) (PCs) along the secretory pathway. The cleavage site is represented by the sequence RYSR72 down arrow, a motif that is conserved in higher eukaryotic FGEs, implying important functionality. Residues Arg-69 and Arg-72 are critical because their mutation abolishes FGE processing. Furthermore, residues Tyr-70 and Ser-71 confer an unusual property to the cleavage motif such that endogenous as well as overexpressed FGE is only partially processed. FGE is cleaved by furin, PACE4, and PC5a. Processing is disabled in furin-deficient cells but fully restored upon transient furin expression, indicating that furin is the major protease cleaving FGE. Processing by endogenous furin occurs mostly intracellularly, although also extracellular processing is observed in HEK293 cells. Interestingly, the truncated form of secreted FGE no longer possesses FGly-generating activity, whereas the unprocessed form of secreted FGE is active. As always both forms are secreted, we postulate that furin-mediated processing of FGE during secretion is a physiological means of higher eukaryotic cells to regulate FGE activity upon exit from the endoplasmic reticulum.
Erscheinungsjahr
2013
Zeitschriftentitel
Journal of Biological Chemistry
Band
288
Ausgabe
8
Seite(n)
5828-5839
ISSN
0021-9258
eISSN
1083-351X
Page URI
https://pub.uni-bielefeld.de/record/2565333

Zitieren

Ennemann E, Radhakrishnan K, Mariappan M, et al. Proprotein Convertases Process and Thereby Inactivate Formylglycine-generating Enzyme. Journal of Biological Chemistry. 2013;288(8):5828-5839.
Ennemann, E., Radhakrishnan, K., Mariappan, M., Wachs, M., Pringle, T. H., Schmidt, B., & Dierks, T. (2013). Proprotein Convertases Process and Thereby Inactivate Formylglycine-generating Enzyme. Journal of Biological Chemistry, 288(8), 5828-5839. doi:10.1074/jbc.M112.405159
Ennemann, Eva, Radhakrishnan, Karthikeyan, Mariappan, Malaiyalam, Wachs, Michaela, Pringle, Thomas H., Schmidt, Bernhard, and Dierks, Thomas. 2013. “Proprotein Convertases Process and Thereby Inactivate Formylglycine-generating Enzyme”. Journal of Biological Chemistry 288 (8): 5828-5839.
Ennemann, E., Radhakrishnan, K., Mariappan, M., Wachs, M., Pringle, T. H., Schmidt, B., and Dierks, T. (2013). Proprotein Convertases Process and Thereby Inactivate Formylglycine-generating Enzyme. Journal of Biological Chemistry 288, 5828-5839.
Ennemann, E., et al., 2013. Proprotein Convertases Process and Thereby Inactivate Formylglycine-generating Enzyme. Journal of Biological Chemistry, 288(8), p 5828-5839.
E. Ennemann, et al., “Proprotein Convertases Process and Thereby Inactivate Formylglycine-generating Enzyme”, Journal of Biological Chemistry, vol. 288, 2013, pp. 5828-5839.
Ennemann, E., Radhakrishnan, K., Mariappan, M., Wachs, M., Pringle, T.H., Schmidt, B., Dierks, T.: Proprotein Convertases Process and Thereby Inactivate Formylglycine-generating Enzyme. Journal of Biological Chemistry. 288, 5828-5839 (2013).
Ennemann, Eva, Radhakrishnan, Karthikeyan, Mariappan, Malaiyalam, Wachs, Michaela, Pringle, Thomas H., Schmidt, Bernhard, and Dierks, Thomas. “Proprotein Convertases Process and Thereby Inactivate Formylglycine-generating Enzyme”. Journal of Biological Chemistry 288.8 (2013): 5828-5839.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Generating aldehyde-tagged antibodies with high titers and high formylglycine yields by supplementing culture media with copper(II).
York D, Baker J, Holder PG, Jones LC, Drake PM, Barfield RM, Bleck GT, Rabuka D., BMC Biotechnol 16(), 2016
PMID: 26911368
Reconstitution of Formylglycine-generating Enzyme with Copper(II) for Aldehyde Tag Conversion.
Holder PG, Jones LC, Drake PM, Barfield RM, Bañas S, de Hart GW, Baker J, Rabuka D., J Biol Chem 290(25), 2015
PMID: 25931126

36 References

Daten bereitgestellt von Europe PubMed Central.

A novel protein modification generating an aldehyde group in sulfatases: its role in catalysis and disease.
von Figura K, Schmidt B, Selmer T, Dierks T., Bioessays 20(6), 1998
PMID: 9699462
Sulfatases and human disease.
Diez-Roux G, Ballabio A., Annu Rev Genomics Hum Genet 6(), 2005
PMID: 16124866
A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency.
Schmidt B, Selmer T, Ingendoh A, von Figura K., Cell 82(2), 1995
PMID: 7628016
Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme.
Dierks T, Schmidt B, Borissenko LV, Peng J, Preusser A, Mariappan M, von Figura K., Cell 113(4), 2003
PMID: 12757705
The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases.
Cosma MP, Pepe S, Annunziata I, Newbold RF, Grompe M, Parenti G, Ballabio A., Cell 113(4), 2003
PMID: 12757706
Molecular and functional analysis of SUMF1 mutations in multiple sulfatase deficiency.
Cosma MP, Pepe S, Parenti G, Settembre C, Annunziata I, Wade-Martins R, Di Domenico C, Di Natale P, Mankad A, Cox B, Uziel G, Mancini GM, Zammarchi E, Donati MA, Kleijer WJ, Filocamo M, Carrozzo R, Carella M, Ballabio A., Hum. Mutat. 23(6), 2004
PMID: 15146462
Multiple sulfatase deficiency is due to hypomorphic mutations of the SUMF1 gene.
Annunziata I, Bouche V, Lombardi A, Settembre C, Ballabio A., Hum. Mutat. 28(9), 2007
PMID: 17657823
Sulfatase modifying factor 1-mediated fibroblast growth factor signaling primes hematopoietic multilineage development.
Buono M, Visigalli I, Bergamasco R, Biffi A, Cosma MP., J. Exp. Med. 207(8), 2010
PMID: 20643830
Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme.
Dierks T, Dickmanns A, Preusser-Kunze A, Schmidt B, Mariappan M, von Figura K, Ficner R, Rudolph MG., Cell 121(4), 2005
PMID: 15907468
The non-catalytic N-terminal extension of formylglycine-generating enzyme is required for its biological activity and retention in the endoplasmic reticulum.
Mariappan M, Gande SL, Radhakrishnan K, Schmidt B, Dierks T, von Figura K., J. Biol. Chem. 283(17), 2008
PMID: 18305113
ERp44 mediates a thiol-independent retention of formylglycine-generating enzyme in the endoplasmic reticulum.
Mariappan M, Radhakrishnan K, Dierks T, Schmidt B, von Figura K., J. Biol. Chem. 283(10), 2008
PMID: 18178549
Multistep, sequential control of the trafficking and function of the multiple sulfatase deficiency gene product, SUMF1 by PDI, ERGIC-53 and ERp44.
Fraldi A, Zito E, Annunziata F, Lombardi A, Cozzolino M, Monti M, Spampanato C, Ballabio A, Pucci P, Sitia R, Cosma MP., Hum. Mol. Genet. 17(17), 2008
PMID: 18508857
Molecular characterization of the human Calpha-formylglycine-generating enzyme.
Preusser-Kunze A, Mariappan M, Schmidt B, Gande SL, Mutenda K, Wenzel D, von Figura K, Dierks T., J. Biol. Chem. 280(15), 2005
PMID: 15657036
Sulfatase modifying factor 1 trafficking through the cells: from endoplasmic reticulum to the endoplasmic reticulum.
Zito E, Buono M, Pepe S, Settembre C, Annunziata I, Surace EM, Dierks T, Monti M, Cozzolino M, Pucci P, Ballabio A, Cosma MP., EMBO J. 26(10), 2007
PMID: 17446859
What lies ahead for the proprotein convertases?
Seidah NG., Ann. N. Y. Acad. Sci. 1220(), 2011
PMID: 21388412
Sequence logos: a new way to display consensus sequences.
Schneider TD, Stephens RM., Nucleic Acids Res. 18(20), 1990
PMID: 2172928
WebLogo: a sequence logo generator.
Crooks GE, Hon G, Chandonia JM, Brenner SE., Genome Res. 14(6), 2004
PMID: 15173120
Proteolytic activation of bacterial toxins by eukaryotic cells is performed by furin and by additional cellular proteases.
Gordon VM, Klimpel KR, Arora N, Henderson MA, Leppla SH., Infect. Immun. 63(1), 1995
PMID: 7806387
Expression, localization, structural, and functional characterization of pFGE, the paralog of the Calpha-formylglycine-generating enzyme.
Mariappan M, Preusser-Kunze A, Balleininger M, Eiselt N, Schmidt B, Gande SL, Wenzel D, Dierks T, von Figura K., J. Biol. Chem. 280(15), 2005
PMID: 15708861
Prediction of proprotein convertase cleavage sites.
Duckert P, Brunak S, Blom N., Protein Eng. Des. Sel. 17(1), 2004
PMID: 14985543
Molecular basis of multiple sulfatase deficiency, mucolipidosis II/III and Niemann-Pick C1 disease - Lysosomal storage disorders caused by defects of non-lysosomal proteins.
Dierks T, Schlotawa L, Frese MA, Radhakrishnan K, von Figura K, Schmidt B., Biochim. Biophys. Acta 1793(4), 2008
PMID: 19124046
The Cambrian conundrum: early divergence and later ecological success in the early history of animals.
Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ., Science 334(6059), 2011
PMID: 22116879
Arg-X-Lys/Arg-Arg motif as a signal for precursor cleavage catalyzed by furin within the constitutive secretory pathway.
Hosaka M, Nagahama M, Kim WS, Watanabe T, Hatsuzawa K, Ikemizu J, Murakami K, Nakayama K., J. Biol. Chem. 266(19), 1991
PMID: 1905715
Substrate cleavage analysis of furin and related proprotein convertases. A comparative study.
Remacle AG, Shiryaev SA, Oh ES, Cieplak P, Srinivasan A, Wei G, Liddington RC, Ratnikov BI, Parent A, Desjardins R, Day R, Smith JW, Lebl M, Strongin AY., J. Biol. Chem. 283(30), 2008
PMID: 18505722
'Shed' furin: mapping of the cleavage determinants and identification of its C-terminus.
Plaimauer B, Mohr G, Wernhart W, Himmelspach M, Dorner F, Schlokat U., Biochem. J. 354(Pt 3), 2001
PMID: 11237874
Characterization of posttranslational formylglycine formation by luminal components of the endoplasmic reticulum.
Fey J, Balleininger M, Borissenko LV, Schmidt B, von Figura K, Dierks T., J. Biol. Chem. 276(50), 2001
PMID: 11600503
Function and structure of a prokaryotic formylglycine-generating enzyme.
Carlson BL, Ballister ER, Skordalakes E, King DS, Breidenbach MA, Gilmore SA, Berger JM, Bertozzi CR., J. Biol. Chem. 283(29), 2008
PMID: 18390551
Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag.
Wu P, Shui W, Carlson BL, Hu N, Rabuka D, Lee J, Bertozzi CR., Proc. Natl. Acad. Sci. U.S.A. 106(9), 2009
PMID: 19202059
In vivo evidence that furin from hepatocytes inactivates PCSK9.
Essalmani R, Susan-Resiga D, Chamberland A, Abifadel M, Creemers JW, Boileau C, Seidah NG, Prat A., J. Biol. Chem. 286(6), 2010
PMID: 21147780
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23288839
PubMed | Europe PMC

Suchen in

Google Scholar