Stable nuclear transformation of Eudorina elegans

Lerche K, Hallmann A (2013)
BMC Biotechnology 13(1): 11.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
UNLABELLED: ABSTRACT: BACKGROUND: A fundamental step in evolution was the transition from unicellular to differentiated, multicellular organisms. Volvocine algae have been used for several decades as a model lineage to investigate the evolutionary aspects of multicellularity and cellular differentiation. There are two well-studied volvocine species, a unicellular alga (Chlamydomonas reinhardtii) and a multicellular alga with differentiated cell types (Volvox carteri). Species with intermediate characteristics also exist, which blur the boundaries between unicellularity and differentiated multicellularity. These species include the globular alga Eudorina elegans, which is composed of 16-32 cells. However, detailed molecular analyses of E. elegans require genetic manipulation. Unfortunately, genetic engineering has not yet been established for Eudorina, and only limited DNA and/or protein sequence information is available. RESULTS: Here, we describe the stable nuclear transformation of E. elegans by particle bombardment using both a chimeric selectable marker and reporter genes from different heterologous sources. Transgenic algae resistant to paromomycin were achieved using the aminoglycoside 3'-phosphotransferase VIII (aphVIII) gene of Streptomyces rimosus, an actinobacterium, under the control of an artificial promoter consisting of two V. carteri promoters in tandem. Transformants exhibited an increase in resistance to paromomycin by up to 333-fold. Co-transformation with non-selectable plasmids was achieved with a rate of 50 - 100%. The luciferase (gluc) gene from the marine copepod Gaussia princeps, which previously was engineered to match the codon usage of C. reinhardtii, was used as a reporter gene. The expression of gluc was mediated by promoters from C. reinhardtii and V. carteri. Heterologous heat shock promoters induced an increase in luciferase activity (up to 600-fold) at elevated temperatures. Long-term stability and both constitutive and inducible expression of the co-bombarded gluc gene was demonstrated by transcription analysis and bioluminescence assays. CONCLUSIONS: Heterologous flanking sequences, including promoters, work in E. elegans and permit both constitutive and inducible expression of heterologous genes. Stable nuclear transformation of E. elegans is now routine. Thus, we show that genetic engineering of a species is possible even without the resources of endogenous genes and promoters.
Erscheinungsjahr
2013
Zeitschriftentitel
BMC Biotechnology
Band
13
Ausgabe
1
Art.-Nr.
11
ISSN
1472-6750
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2564153

Zitieren

Lerche K, Hallmann A. Stable nuclear transformation of Eudorina elegans. BMC Biotechnology. 2013;13(1): 11.
Lerche, K., & Hallmann, A. (2013). Stable nuclear transformation of Eudorina elegans. BMC Biotechnology, 13(1), 11. doi:10.1186/1472-6750-13-11
Lerche, Kai, and Hallmann, Armin. 2013. “Stable nuclear transformation of Eudorina elegans”. BMC Biotechnology 13 (1): 11.
Lerche, K., and Hallmann, A. (2013). Stable nuclear transformation of Eudorina elegans. BMC Biotechnology 13:11.
Lerche, K., & Hallmann, A., 2013. Stable nuclear transformation of Eudorina elegans. BMC Biotechnology, 13(1): 11.
K. Lerche and A. Hallmann, “Stable nuclear transformation of Eudorina elegans”, BMC Biotechnology, vol. 13, 2013, : 11.
Lerche, K., Hallmann, A.: Stable nuclear transformation of Eudorina elegans. BMC Biotechnology. 13, : 11 (2013).
Lerche, Kai, and Hallmann, Armin. “Stable nuclear transformation of Eudorina elegans”. BMC Biotechnology 13.1 (2013): 11.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:12Z
MD5 Prüfsumme
3f9ebb9d74e00f3f8732c45852cf37b1


10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Two-component cyclase opsins of green algae are ATP-dependent and light-inhibited guanylyl cyclases.
Tian Y, Gao S, von der Heyde EL, Hallmann A, Nagel G., BMC Biol 16(1), 2018
PMID: 30522480
Transgene Expression in Microalgae-From Tools to Applications.
Doron L, Segal N, Shapira M., Front Plant Sci 7(), 2016
PMID: 27148328
The inducible nitA promoter provides a powerful molecular switch for transgene expression in Volvox carteri.
von der Heyde EL, Klein B, Abram L, Hallmann A., BMC Biotechnol 15(), 2015
PMID: 25888095
Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of L-ornithine.
Qin J, Zhou YJ, Krivoruchko A, Huang M, Liu L, Khoomrung S, Siewers V, Jiang B, Nielsen J., Nat Commun 6(), 2015
PMID: 26345617
Understanding nitrate assimilation and its regulation in microalgae.
Sanz-Luque E, Chamizo-Ampudia A, Llamas A, Galvan A, Fernandez E., Front Plant Sci 6(), 2015
PMID: 26579149
Stable nuclear transformation of Pandorina morum.
Lerche K, Hallmann A., BMC Biotechnol 14(), 2014
PMID: 25031031

64 References

Daten bereitgestellt von Europe PubMed Central.

The deep roots of eukaryotes.
Baldauf SL., Science 300(5626), 2003
PMID: 12805537
The unicellular ancestry of animal development.
King N., Dev. Cell 7(3), 2004
PMID: 15363407

AUTHOR UNKNOWN, 0
Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri.
Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I, Ferris P, Kuo A, Mitros T, Fritz-Laylin LK, Hellsten U, Chapman J, Simakov O, Rensing SA, Terry A, Pangilinan J, Kapitonov V, Jurka J, Salamov A, Shapiro H, Schmutz J, Grimwood J, Lindquist E, Lucas S, Grigoriev IV, Schmitt R, Kirk D, Rokhsar DS., Science 329(5988), 2010
PMID: 20616280
Evolution of reproductive development in the volvocine algae.
Hallmann A., Sex. Plant Reprod. 24(2), 2010
PMID: 21174128

AUTHOR UNKNOWN, 0
The Chlamydomonas genome reveals the evolution of key animal and plant functions.
Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR., Science 318(5848), 2007
PMID: 17932292

AUTHOR UNKNOWN, 0
SEXUAL POPULATIONS OF GONIUM PECTORALE (VOLVOCALES).
STEIN JR., Am. J. Bot. 52(), 1965
PMID: 14286045
Identification of the minus-dominance gene ortholog in the mating-type locus of Gonium pectorale.
Hamaji T, Ferris PJ, Coleman AW, Waffenschmidt S, Takahashi F, Nishii I, Nozaki H., Genetics 178(1), 2008
PMID: 18202374
Stable nuclear transformation of Gonium pectorale.
Lerche K, Hallmann A., BMC Biotechnol. 9(), 2009
PMID: 19591675

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Ultraviolet radiation studies on the colonial alga, Eudorina elegans.
Kemp CL, Wnetworth JW., Can. J. Microbiol. 17(11), 1971
PMID: 5156940

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Nuclear transformation of Volvox carteri.
Schiedlmeier B, Schmitt R, Muller W, Kirk MM, Gruber H, Mages W, Kirk DL., Proc. Natl. Acad. Sci. U.S.A. 91(11), 1994
PMID: 8197189
High-frequency nuclear transformation of Chlamydomonas reinhardtii.
Kindle KL., Proc. Natl. Acad. Sci. U.S.A. 87(3), 1990
PMID: 2105499

AUTHOR UNKNOWN, 0
Intron sequences provide a tool for high-resolution phylogenetic analysis of volvocine algae.
Liss M, Kirk DL, Beyser K, Fabry S., Curr. Genet. 31(3), 1997
PMID: 9065384

AUTHOR UNKNOWN, 0
Phylogenetic analysis of "Volvocacae" for comparative genetic studies.
Coleman AW., Proc. Natl. Acad. Sci. U.S.A. 96(24), 1999
PMID: 10570169

AUTHOR UNKNOWN, 0
Origin and evolution of the colonial volvocales (Chlorophyceae) as inferred from multiple, chloroplast gene sequences.
Nozaki H, Misawa K, Kajita T, Kato M, Nohara S, Watanabe MM., Mol. Phylogenet. Evol. 17(2), 2000
PMID: 11083939

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Recharacterization of Chlamydomonas reinhardtii and its relatives with new isolates from Japan.
Nakada T, Shinkawa H, Ito T, Tomita M., J. Plant Res. 123(1), 2009
PMID: 19882207
High efficiency transformation of Tolypocladium geodes conidiospores to phleomycin resistance.
Calmels T, Parriche M, Durand H, Tiraby G., Curr. Genet. 20(4), 1991
PMID: 1934136
Cassettes of the Streptoalloteichus hindustanus ble gene for transformation of lower and higher eukaryotes to phleomycin resistance.
Drocourt D, Calmels T, Reynes JP, Baron M, Tiraby G., Nucleic Acids Res. 18(13), 1990
PMID: 1695734
The bacterial paromomycin resistance gene, aphH, as a dominant selectable marker in Volvox carteri.
Jakobiak T, Mages W, Scharf B, Babinger P, Stark K, Schmitt R., Protist 155(4), 2004
PMID: 15648719
Isolation and characterization of a mutant protoporphyrinogen oxidase gene from Chlamydomonas reinhardtii conferring resistance to porphyric herbicides.
Randolph-Anderson BL, Sato R, Johnson AM, Harris EH, Hauser CR, Oeda K, Ishige F, Nishio S, Gillham NW, Boynton JE., Plant Mol. Biol. 38(5), 1998
PMID: 9862501
Reporter genes and highly regulated promoters as tools for transformation experiments in Volvox carteri.
Hallmann A, Sumper M., Proc. Natl. Acad. Sci. U.S.A. 91(24), 1994
PMID: 7972102
Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast.
Franklin S, Ngo B, Efuet E, Mayfield SP., Plant J. 30(6), 2002
PMID: 12061904
Purification and properties of Renilla reniformis luciferase.
Matthews JC, Hori K, Cormier MJ., Biochemistry 16(1), 1977
PMID: 12797
Gene replacement by homologous recombination in the multicellular green alga Volvox carteri.
Hallmann A, Rappel A, Sumper M., Proc. Natl. Acad. Sci. U.S.A. 94(14), 1997
PMID: 9207115
Rescue of a paralyzed-flagella mutant of Chlamydomonas by transformation.
Diener DR, Curry AM, Johnson KA, Williams BD, Lefebvre PA, Kindle KL, Rosenbaum JL., Proc. Natl. Acad. Sci. U.S.A. 87(15), 1990
PMID: 2377611
Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii.
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK., Plant Physiol. 137(2), 2005
PMID: 15653810
Enzymes involved in anaerobic respiration appear to play a role in Actinobacillus pleuropneumoniae virulence.
Jacobsen I, Hennig-Pauka I, Baltes N, Trost M, Gerlach GF., Infect. Immun. 73(1), 2005
PMID: 15618158
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23402598
PubMed | Europe PMC

Suchen in

Google Scholar