Highly diverse chromoviruses of Beta vulgaris are classified by chromodomains and chromosomal integration

Weber B, Heitkam T, Holtgräwe D, Weisshaar B, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T (2013)
Mobile DNA 4(1): 8.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Weber, Beatrice; Heitkam, Tony; Holtgräwe, DanielaUniBi ; Weisshaar, BerndUniBi ; Minoche, André E; Dohm, Juliane C; Himmelbauer, Heinz; Schmidt, Thomas
Abstract / Bemerkung
BACKGROUND: Chromoviruses are one of the three genera of Ty3-gypsy long terminal repeat (LTR) retrotransposons, and are present in high copy numbers in plant genomes. They are widely distributed within the plant kingdom, with representatives even in lower plants such as green and red algae. Their hallmark is the presence of a chromodomain at the C-terminus of the integrase. The chromodomain exhibits structural characteristics similar to proteins of the heterochromatin protein 1 (HP1) family, which mediate the binding of each chromovirus type to specific histone variants. A specific integration via the chromodomain has been shown for only a few chromoviruses. However, a detailed study of different chromoviral clades populating a single plant genome has not yet been carried out. RESULTS: We conducted a comprehensive survey of chromoviruses within the Beta vulgaris (sugar beet) genome, and found a highly diverse chromovirus population, with significant differences in element size, primarily caused by their flanking LTRs. In total, we identified and annotated full-length members of 16 families belonging to the four plant chromoviral clades: CRM, Tekay, Reina, and Galadriel. The families within each clade are structurally highly conserved; in particular, the position of the chromodomain coding region relative to the polypurine tract is clade-specific. Two distinct groups of chromodomains were identified. The group II chromodomain was present in three chromoviral clades, whereas families of the CRM clade contained a more divergent motif. Physical mapping using representatives of all four clades identified a clade-specific integration pattern. For some chromoviral families, we detected the presence of expressed sequence tags, indicating transcriptional activity. CONCLUSIONS: We present a detailed study of chromoviruses, belonging to the four major clades, which populate a single plant genome. Our results illustrate the diversity and family structure of B. vulgaris chromoviruses, and emphasize the role of chromodomains in the targeted integration of these viruses. We suggest that the diverse sets of plant chromoviruses with their different localization patterns might help to facilitate plant-genome organization in a structural and functional manner.
Erscheinungsjahr
2013
Zeitschriftentitel
Mobile DNA
Band
4
Ausgabe
1
Art.-Nr.
8
ISSN
1759-8753
Page URI
https://pub.uni-bielefeld.de/record/2562610

Zitieren

Weber B, Heitkam T, Holtgräwe D, et al. Highly diverse chromoviruses of Beta vulgaris are classified by chromodomains and chromosomal integration. Mobile DNA. 2013;4(1): 8.
Weber, B., Heitkam, T., Holtgräwe, D., Weisshaar, B., Minoche, A. E., Dohm, J. C., Himmelbauer, H., et al. (2013). Highly diverse chromoviruses of Beta vulgaris are classified by chromodomains and chromosomal integration. Mobile DNA, 4(1), 8. doi:10.1186/1759-8753-4-8
Weber, B., Heitkam, T., Holtgräwe, D., Weisshaar, B., Minoche, A. E., Dohm, J. C., Himmelbauer, H., and Schmidt, T. (2013). Highly diverse chromoviruses of Beta vulgaris are classified by chromodomains and chromosomal integration. Mobile DNA 4:8.
Weber, B., et al., 2013. Highly diverse chromoviruses of Beta vulgaris are classified by chromodomains and chromosomal integration. Mobile DNA, 4(1): 8.
B. Weber, et al., “Highly diverse chromoviruses of Beta vulgaris are classified by chromodomains and chromosomal integration”, Mobile DNA, vol. 4, 2013, : 8.
Weber, B., Heitkam, T., Holtgräwe, D., Weisshaar, B., Minoche, A.E., Dohm, J.C., Himmelbauer, H., Schmidt, T.: Highly diverse chromoviruses of Beta vulgaris are classified by chromodomains and chromosomal integration. Mobile DNA. 4, : 8 (2013).
Weber, Beatrice, Heitkam, Tony, Holtgräwe, Daniela, Weisshaar, Bernd, Minoche, André E, Dohm, Juliane C, Himmelbauer, Heinz, and Schmidt, Thomas. “Highly diverse chromoviruses of Beta vulgaris are classified by chromodomains and chromosomal integration”. Mobile DNA 4.1 (2013): 8.

11 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

FlexiDot: highly customizable, ambiguity-aware dotplots for visual sequence analyses.
Seibt KM, Schmidt T, Heitkam T., Bioinformatics 34(20), 2018
PMID: 29762645
DNA methylation of retrotransposons, DNA transposons and genes in sugar beet (Beta vulgaris L.).
Zakrzewski F, Schmidt M, Van Lijsebettens M, Schmidt T., Plant J 90(6), 2017
PMID: 28257158
Genome-wide analysis of LTR-retrotransposon diversity and its impact on the evolution of the genus Helianthus (L.).
Mascagni F, Giordani T, Ceccarelli M, Cavallini A, Natali L., BMC Genomics 18(1), 2017
PMID: 28821238
The impact of the Tekay chromoviral elements on genome organisation and evolution of Anemone s.l. (Ranunculaceae).
Mlinarec J, Franjević D, Harapin J, Besendorfer V., Plant Biol (Stuttg) 18(2), 2016
PMID: 26370195
Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris).
Kowar T, Zakrzewski F, Macas J, Kobližková A, Viehoever P, Weisshaar B, Schmidt T., BMC Plant Biol 16(1), 2016
PMID: 27230558
Transcriptionally active LTR retrotransposons in Eucalyptus genus are differentially expressed and insertionally polymorphic.
Marcon HS, Domingues DS, Silva JC, Borges RJ, Matioli FF, Fontes MR, Marino CL., BMC Plant Biol 15(), 2015
PMID: 26268941
Next-generation sequencing reveals differentially amplified tandem repeats as a major genome component of Northern Europe's oldest Camellia japonica.
Heitkam T, Petrasch S, Zakrzewski F, Kögler A, Wenke T, Wanke S, Schmidt T., Chromosome Res 23(4), 2015
PMID: 26582634
Profiling of extensively diversified plant LINEs reveals distinct plant-specific subclades.
Heitkam T, Holtgräwe D, Dohm JC, Minoche AE, Himmelbauer H, Weisshaar B, Schmidt T., Plant J 79(3), 2014
PMID: 24862340
Retrotransposon replication in plants.
Schulman AH., Curr Opin Virol 3(6), 2013
PMID: 24035277

80 References

Daten bereitgestellt von Europe PubMed Central.

Nested retrotransposons in the intergenic regions of the maize genome.
SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL., Science 274(5288), 1996
PMID: 8864112
The paleontology of intergene retrotransposons of maize.
SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL., Nat. Genet. 20(1), 1998
PMID: 9731528
Plant genome organisation and diversity: the year of the junk!
Morgante M., Curr. Opin. Biotechnol. 17(2), 2006
PMID: 16530402
Transposable element origins of epigenetic gene regulation.
Lisch D, Bennetzen JL., Curr. Opin. Plant Biol. 14(2), 2011
PMID: 21444239
Rapid recent growth and divergence of rice nuclear genomes.
Ma J, Bennetzen JL., Proc. Natl. Acad. Sci. U.S.A. 101(34), 2004
PMID: 15240870
A unified classification system for eukaryotic transposable elements.
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH., Nat. Rev. Genet. 8(12), 2007
PMID: 17984973
Controlling integration specificity of a yeast retrotransposon.
Zhu Y, Dai J, Fuerst PG, Voytas DF., Proc. Natl. Acad. Sci. U.S.A. 100(10), 2003
PMID: 12730380
Retroviral DNA integration: viral and cellular determinants of target-site selection.
Lewinski MK, Yamashita M, Emerman M, Ciuffi A, Marshall H, Crawford G, Collins F, Shinn P, Leipzig J, Hannenhalli S, Berry CC, Ecker JR, Bushman FD., PLoS Pathog. 2(6), 2006
PMID: 16789841
Evolutionary genomics of chromoviruses in eukaryotes.
Gorinsek B, Gubensek F, Kordis D., Mol. Biol. Evol. 21(5), 2004
PMID: 14739248
The many colours of chromodomains.
Brehm A, Tufteland KR, Aasland R, Becker PB., Bioessays 26(2), 2004
PMID: 14745831
Chromodomains direct integration of retrotransposons to heterochromatin.
Gao X, Hou Y, Ebina H, Levin HL, Voytas DF., Genome Res. 18(3), 2008
PMID: 18256242
The chromodomain of Tf1 integrase promotes binding to cDNA and mediates target site selection.
Chatterjee AG, Leem YE, Kelly FD, Levin HL., J. Virol. 83(6), 2008
PMID: 19109383
Die Arten der Gattung Beta
AUTHOR UNKNOWN, 1927
Nuclear DNA content of some important plant species
AUTHOR UNKNOWN, 1991
Genome size and the proportion of repeated nucleotide sequence DNA in plants.
Flavell RB, Bennett MD, Smith JB, Smith DB., Biochem. Genet. 12(4), 1974
PMID: 4441361
Evolutionary reshuffling in the Errantivirus lineage Elbe within the Beta vulgaris genome.
Wollrab C, Heitkam T, Holtgrawe D, Weisshaar B, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T., Plant J. 72(4), 2012
PMID: 22804913
Homologues of the Cf-9 disease resistance gene (Hcr9s) are present at multiple loci on the short arm of tomato chromosome 1.
Parniske M, Wulff BB, Bonnema G, Thomas CM, Jones DA, Jones JD., Mol. Plant Microbe Interact. 12(2), 1999
PMID: 9926411
An improved PCR method for walking in uncloned genomic DNA.
Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA., Nucleic Acids Res. 23(6), 1995
PMID: 7731798
A nest of LTR retrotransposons adjacent the disease resistance-priming gene NPR1 in Beta vulgaris L. U.S. Hybrid H20
AUTHOR UNKNOWN, 2009
Analysis of a c0t-1 library enables the targeted identification of minisatellite and satellite families in Beta vulgaris.
Zakrzewski F, Wenke T, Holtgrawe D, Weisshaar B, Schmidt T., BMC Plant Biol. 10(), 2010
PMID: 20064260
A retrotransposon family from the pufferfish (fugu) Fugu rubripes.
Poulter R, Butler M., Gene 215(2), 1998
PMID: 9714821
MAGGY, a retrotransposon in the genome of the rice blast fungus Magnaporthe grisea.
Farman ML, Tosa Y, Nitta N, Leong SA., Mol. Gen. Genet. 251(6), 1996
PMID: 8757397
Pyret, a Ty3/Gypsy retrotransposon in Magnaporthe grisea contains an extra domain between the nucleocapsid and protease domains.
Nakayashiki H, Matsuo H, Chuma I, Ikeda K, Betsuyaku S, Kusaba M, Tosa Y, Mayama S., Nucleic Acids Res. 29(20), 2001
PMID: 11600699
Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice.
Nagaki K, Neumann P, Zhang D, Ouyang S, Buell CR, Cheng Z, Jiang J., Mol. Biol. Evol. 22(4), 2004
PMID: 15616142
Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail.
Jacobs SA, Khorasanizadeh S., Science 295(5562), 2002
PMID: 11859155
Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9.
Nielsen PR, Nietlispach D, Mott HR, Callaghan J, Bannister A, Kouzarides T, Murzin AG, Murzina NV, Laue ED., Nature 416(6876), 2002
PMID: 11882902
Chromodomains and LTR retrotransposons in plants.
Novikova O., Commun Integr Biol 2(2), 2009
PMID: 19513271
A molecular view of plant centromeres.
Jiang J, Birchler JA, Parrott WA, Dawe RK., Trends Plant Sci. 8(12), 2003
PMID: 14659705
Plant centromeric retrotransposons: a structural and cytogenetic perspective.
Neumann P, Navratilova A, Koblizkova A, Kejnovsky E, Hribova E, Hobza R, Widmer A, Dolezel J, Macas J., Mob DNA 2(1), 2011
PMID: 21371312
Limitations of next-generation genome sequence assembly.
Alkan C, Sajjadian S, Eichler EE., Nat. Methods 8(1), 2010
PMID: 21102452
Identification and chromosomal localization of the monkey retrotransposon in Musa sp.
Balint-Kurti PJ, Clendennen SK, Dolezelova M, Valarik M, Dolezel J, Beetham PR, May GD., Mol. Gen. Genet. 263(6), 2000
PMID: 10954075
Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing.
Hribova E, Neumann P, Matsumoto T, Roux N, Macas J, Dolezel J., BMC Plant Biol. 10(), 2010
PMID: 20846365
Evolution of ribosomal DNA-derived satellite repeat in tomato genome.
Jo SH, Koo DH, Kim JF, Hur CG, Lee S, Yang TJ, Kwon SY, Choi D., BMC Plant Biol. 9(), 2009
PMID: 19351415
Transposable elements and the epigenetic regulation of the genome.
Slotkin RK, Martienssen R., Nat. Rev. Genet. 8(4), 2007
PMID: 17363976
Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata
AUTHOR UNKNOWN, 2011
Integration by design.
Sandmeyer S., Proc. Natl. Acad. Sci. U.S.A. 100(10), 2003
PMID: 12732725
Retroviral DNA integration--mechanism and consequences.
Lewinski MK, Bushman FD., Adv. Genet. 55(), 2005
PMID: 16291214
Targeting of the yeast Ty5 retrotransposon to silent chromatin is mediated by interactions between integrase and Sir4p.
Xie W, Gai X, Zhu Y, Zappulla DC, Sternglanz R, Voytas DF., Mol. Cell. Biol. 21(19), 2001
PMID: 11533248
Integrative epigenomic mapping defines four main chromatin states in Arabidopsis.
Roudier F, Ahmed I, Berard C, Sarazin A, Mary-Huard T, Cortijo S, Bouyer D, Caillieux E, Duvernois-Berthet E, Al-Shikhley L, Giraut L, Despres B, Drevensek S, Barneche F, Derozier S, Brunaud V, Aubourg S, Schnittger A, Bowler C, Martin-Magniette ML, Robin S, Caboche M, Colot V., EMBO J. 30(10), 2011
PMID: 21487388
A short amino acid sequence able to specify nuclear location.
Kalderon D, Roberts BL, Richardson WD, Smith AE., Cell 39(3 Pt 2), 1984
PMID: 6096007
A Ty1 integrase nuclear localization signal required for retrotransposition.
Moore SP, Rinckel LA, Garfinkel DJ., Mol. Cell. Biol. 18(2), 1998
PMID: 9448008
The Ty1 integrase protein can exploit the classical nuclear protein import machinery for entry into the nucleus.
McLane LM, Pulliam KF, Devine SE, Corbett AH., Nucleic Acids Res. 36(13), 2008
PMID: 18586821
Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres.
Nagaki K, Song J, Stupar RM, Parokonny AS, Yuan Q, Ouyang S, Liu J, Hsiao J, Jones KM, Dawe RK, Buell CR, Jiang J., Genetics 163(2), 2003
PMID: 12618412
Retrotransposon evolution in diverse plant genomes.
Langdon T, Seago C, Mende M, Leggett M, Thomas H, Forster JW, Jones RN, Jenkins G., Genetics 156(1), 2000
PMID: 10978295
Centromeres put epigenetics in the driver's seat.
Dawe RK, Henikoff S., Trends Biochem. Sci. 31(12), 2006
PMID: 17074489
Centromere-encoded RNAs are integral components of the maize kinetochore.
Topp CN, Zhong CX, Dawe RK., Proc. Natl. Acad. Sci. U.S.A. 101(45), 2004
PMID: 15514020
Derepression of the plant Chromovirus LORE1 induces germline transposition in regenerated plants.
Fukai E, Umehara Y, Sato S, Endo M, Kouchi H, Hayashi M, Stougaard J, Hirochika H., PLoS Genet. 6(3), 2010
PMID: 20221264
Nucleolar dominance and ribosomal RNA gene silencing.
Tucker S, Vitins A, Pikaard CS., Curr. Opin. Cell Biol. 22(3), 2010
PMID: 20392622
Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics.
Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW., Proc. Natl. Acad. Sci. U.S.A. 81(24), 1984
PMID: 6096873
Construction of a sugar beet BAC library from a hybrid with diverse traits
AUTHOR UNKNOWN, 2004
Profile hidden Markov models.
Eddy SR., Bioinformatics 14(9), 1998
PMID: 9918945
Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees.
Llorens C, Munoz-Pomer A, Bernad L, Botella H, Moya A., Biol. Direct 4(), 2009
PMID: 19883502
The Gypsy Database (GyDB) of mobile genetic elements: release 2.0
AUTHOR UNKNOWN, 2011
MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.
Tamura K, Dudley J, Nei M, Kumar S., Mol. Biol. Evol. 24(8), 2007
PMID: 17488738

AUTHOR UNKNOWN, 1989
The molecular cytogenetics of plants
AUTHOR UNKNOWN, 1991
High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres.
Fransz PF, Alonso-Blanco C, Liharska TB, Peeters AJ, Zabel P, de Jong JH., Plant J. 9(3), 1996
PMID: 8919917

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23448600
PubMed | Europe PMC

Suchen in

Google Scholar