Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1

Burney S, Wenzel R, Kottke T, Roussel T, Hoang N, Bouly J-P, Bittl R, Heberle J, Ahmad M (2012)
Angewandte Chemie - International Edition 51(37): 9356-9360.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Burney, Sarah; Wenzel, Ringo; Kottke, TilmanUniBi ; Roussel, Thomas; Hoang, Nathalie; Bouly, Jean-Pierre; Bittl, Robert; Heberle, Joachim; Ahmad, Margaret
Stichworte
Oxidation-Reduction; Flavins/chemistry; Arabidopsis/enzymology; Amino Acid Substitution; Arabidopsis Proteins/genetics; Arabidopsis Proteins/metabolism; Cryptochromes/genetics; DNA Repair; Cryptochromes/metabolism; Ultraviolet Rays
Erscheinungsjahr
2012
Zeitschriftentitel
Angewandte Chemie - International Edition
Band
51
Ausgabe
37
Seite(n)
9356-9360
ISSN
1433-7851
Page URI
https://pub.uni-bielefeld.de/record/2561793

Zitieren

Burney S, Wenzel R, Kottke T, et al. Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1. Angewandte Chemie - International Edition. 2012;51(37):9356-9360.
Burney, S., Wenzel, R., Kottke, T., Roussel, T., Hoang, N., Bouly, J. - P., Bittl, R., et al. (2012). Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1. Angewandte Chemie - International Edition, 51(37), 9356-9360. doi:10.1002/anie.201203476
Burney, Sarah, Wenzel, Ringo, Kottke, Tilman, Roussel, Thomas, Hoang, Nathalie, Bouly, Jean-Pierre, Bittl, Robert, Heberle, Joachim, and Ahmad, Margaret. 2012. “Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1”. Angewandte Chemie - International Edition 51 (37): 9356-9360.
Burney, S., Wenzel, R., Kottke, T., Roussel, T., Hoang, N., Bouly, J. - P., Bittl, R., Heberle, J., and Ahmad, M. (2012). Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1. Angewandte Chemie - International Edition 51, 9356-9360.
Burney, S., et al., 2012. Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1. Angewandte Chemie - International Edition, 51(37), p 9356-9360.
S. Burney, et al., “Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1”, Angewandte Chemie - International Edition, vol. 51, 2012, pp. 9356-9360.
Burney, S., Wenzel, R., Kottke, T., Roussel, T., Hoang, N., Bouly, J.-P., Bittl, R., Heberle, J., Ahmad, M.: Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1. Angewandte Chemie - International Edition. 51, 9356-9360 (2012).
Burney, Sarah, Wenzel, Ringo, Kottke, Tilman, Roussel, Thomas, Hoang, Nathalie, Bouly, Jean-Pierre, Bittl, Robert, Heberle, Joachim, and Ahmad, Margaret. “Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1”. Angewandte Chemie - International Edition 51.37 (2012): 9356-9360.

12 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A Compass at Weak Magnetic Fields Using Thymine Dimer Repair.
Zwang TJ, Tse ECM, Zhong D, Barton JK., ACS Cent Sci 4(3), 2018
PMID: 29632887
Kinetic Modeling of the Arabidopsis Cryptochrome Photocycle: FADH(o) Accumulation Correlates with Biological Activity.
Procopio M, Link J, Engle D, Witczak J, Ritz T, Ahmad M., Front Plant Sci 7(), 2016
PMID: 27446119
Proton transfer to flavin stabilizes the signaling state of the blue light receptor plant cryptochrome.
Hense A, Herman E, Oldemeyer S, Kottke T., J Biol Chem 290(3), 2015
PMID: 25471375
Cellular metabolites modulate in vivo signaling of Arabidopsis cryptochrome-1.
El-Esawi M, Glascoe A, Engle D, Ritz T, Link J, Ahmad M., Plant Signal Behav 10(9), 2015
PMID: 26313597
The class III cyclobutane pyrimidine dimer photolyase structure reveals a new antenna chromophore binding site and alternative photoreduction pathways.
Scheerer P, Zhang F, Kalms J, von Stetten D, Krauß N, Oberpichler I, Lamparter T., J Biol Chem 290(18), 2015
PMID: 25784552
Spectroscopic characterization of radicals and radical pairs in fruit fly cryptochrome - protonated and nonprotonated flavin radical-states.
Paulus B, Bajzath C, Melin F, Heidinger L, Kromm V, Herkersdorf C, Benz U, Mann L, Stehle P, Hellwig P, Weber S, Schleicher E., FEBS J 282(16), 2015
PMID: 25879256
Formation and Direct Repair of UV-induced Dimeric DNA Pyrimidine Lesions.
Kneuttinger AC, Kashiwazaki G, Prill S, Heil K, Müller M, Carell T., Photochem Photobiol 90(1), 2014
PMID: 24354557
Cellular metabolites enhance the light sensitivity of Arabidopsis cryptochrome through alternate electron transfer pathways.
Engelhard C, Wang X, Robles D, Moldt J, Essen LO, Batschauer A, Bittl R, Ahmad M., Plant Cell 26(11), 2014
PMID: 25428980
A radical sense of direction: signalling and mechanism in cryptochrome magnetoreception.
Dodson CA, Hore PJ, Wallace MI., Trends Biochem Sci 38(9), 2013
PMID: 23938034

22 References

Daten bereitgestellt von Europe PubMed Central.

The cryptochromes.
Lin C, Todo T., Genome Biol. 6(5), 2005
PMID: 15892880
The cryptochromes: blue light photoreceptors in plants and animals.
Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M., Annu Rev Plant Biol 62(), 2011
PMID: 21526969
Loss of cryptochrome reduces cancer risk in p53 mutant mice.
Ozturk N, Lee JH, Gaddameedhi S, Sancar A., Proc. Natl. Acad. Sci. U.S.A. 106(8), 2009
PMID: 19188586
The core circadian gene Cryptochrome 2 influences breast cancer risk, possibly by mediating hormone signaling.
Hoffman AE, Zheng T, Yi CH, Stevens RG, Ba Y, Zhang Y, Leaderer D, Holford T, Hansen J, Zhu Y., Cancer Prev Res (Phila) 3(4), 2010
PMID: 20233903
Structural biology of DNA photolyases and cryptochromes.
Muller M, Carell T., Curr. Opin. Struct. Biol. 19(3), 2009
PMID: 19487120
Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states.
Bouly JP, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van Der Straeten D, Bakrim N, Meier S, Batschauer A, Galland P, Bittl R, Ahmad M., J. Biol. Chem. 282(13), 2007
PMID: 17237227
The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone.
Banerjee R, Schleicher E, Meier S, Viana RM, Pokorny R, Ahmad M, Bittl R, Batschauer A., J. Biol. Chem. 282(20), 2007
PMID: 17355959
A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome.
Berndt A, Kottke T, Breitkreuz H, Dvorsky R, Hennig S, Alexander M, Wolf E., J. Biol. Chem. 282(17), 2007
PMID: 17298948
Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells.
Hoang N, Schleicher E, Kacprzak S, Bouly JP, Picot M, Wu W, Berndt A, Wolf E, Bittl R, Ahmad M., PLoS Biol. 6(7), 2008
PMID: 18597555
Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction.
Li X, Wang Q, Yu X, Liu H, Yang H, Zhao C, Liu X, Tan C, Klejnot J, Zhong D, Lin C., Proc. Natl. Acad. Sci. U.S.A. 108(51), 2011
PMID: 22139370
Purification and characterization of three members of the photolyase/cryptochrome family blue-light photoreceptors from Vibrio cholerae.
Worthington EN, Kavakli IH, Berrocal-Tito G, Bondo BE, Sancar A., J. Biol. Chem. 278(40), 2003
PMID: 12878596
Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy.
Kottke T, Batschauer A, Ahmad M, Heberle J., Biochemistry 45(8), 2006
PMID: 16489739
A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity.
Selby CP, Sancar A., Proc. Natl. Acad. Sci. U.S.A. 103(47), 2006
PMID: 17062752
Reaction mechanism of Drosophila cryptochrome.
Ozturk N, Selby CP, Annayev Y, Zhong D, Sancar A., Proc. Natl. Acad. Sci. U.S.A. 108(2), 2010
PMID: 21187431
The C termini of Arabidopsis cryptochromes mediate a constitutive light response.
Yang HQ, Wu YJ, Tang RH, Liu D, Liu Y, Cashmore AR., Cell 103(5), 2000
PMID: 11114337
Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis.
Liu H, Yu X, Li K, Klejnot J, Yang H, Lisiero D, Lin C., Science 322(5907), 2008
PMID: 18988809
Light-dependent interaction between Drosophila CRY and the clock protein PER mediated by the carboxy terminus of CRY.
Rosato E, Codd V, Mazzotta G, Piccin A, Zordan M, Costa R, Kyriacou CP., Curr. Biol. 11(12), 2001
PMID: 11448767
Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome.
Kondoh M, Shiraishi C, Muller P, Ahmad M, Hitomi K, Getzoff ED, Terazima M., J. Mol. Biol. 413(1), 2011
PMID: 21875594
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22890584
PubMed | Europe PMC

Suchen in

Google Scholar