Transcriptional control of lipid metabolism by the MarR-like regulator FamR and the global regulator GlxR in the lipophilic axilla isolateCorynebacterium jeikeiumK411

Barzantny H, Guttmann S, Lässig C, Brune I, Tauch A (2013)
Microbial Biotechnology 6(2): 118-130.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Barzantny, HelenaUniBi; Guttmann, Sarah; Lässig, Charlotte; Brune, IrisUniBi; Tauch, AndreasUniBi
Abstract / Bemerkung
Corynebacterial fatty acid metabolism has been associated with human body odour, and is therefore discussed as a potential target for the development of new deodorant additives. For this reason, the transcription levels of fad genes associated with lipid metabolism in the axilla isolate Corynebacterium jeikeium were analysed during growth on different lipid sources. The transcription of several fad genes was induced two- to ninefold in the presence of Tween 60, including the acyl-CoA dehydrogenase gene fadE6. DNA affinity chromatography identified the MarR-like protein FamR as candidate regulator of fadE6. DNA band shift assays and in vivo reporter gene fusions confirmed the direct interaction of FamR with the mapped fadE6 promoter region. Moreover, DNA affinity chromatography and DNA band shift assays detected the binding of GlxR to the promoter regions of fadE6 and famR, revealing a hierarchical control of fadE6 transcription by a feed-forward loop. Binding of GlxR and FamR to additional fad gene regions was demonstrated in vitro by DNA band shift assays, resulting in the co-regulation of fadA, fadD, fadE and fadH genes. These results shed first light on the hierarchical transcriptional control of lipid metabolism in C.jeikeium, a pathway associated with the development of human axillary odour. (2012 The Authors. Microbial Biotechnology 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.)
Erscheinungsjahr
2013
Zeitschriftentitel
Microbial Biotechnology
Band
6
Ausgabe
2
Seite(n)
118-130
ISSN
1751-7915
Page URI
https://pub.uni-bielefeld.de/record/2560776

Zitieren

Barzantny H, Guttmann S, Lässig C, Brune I, Tauch A. Transcriptional control of lipid metabolism by the MarR-like regulator FamR and the global regulator GlxR in the lipophilic axilla isolateCorynebacterium jeikeiumK411. Microbial Biotechnology. 2013;6(2):118-130.
Barzantny, H., Guttmann, S., Lässig, C., Brune, I., & Tauch, A. (2013). Transcriptional control of lipid metabolism by the MarR-like regulator FamR and the global regulator GlxR in the lipophilic axilla isolateCorynebacterium jeikeiumK411. Microbial Biotechnology, 6(2), 118-130. doi:10.1111/1751-7915.12004
Barzantny, Helena, Guttmann, Sarah, Lässig, Charlotte, Brune, Iris, and Tauch, Andreas. 2013. “Transcriptional control of lipid metabolism by the MarR-like regulator FamR and the global regulator GlxR in the lipophilic axilla isolateCorynebacterium jeikeiumK411”. Microbial Biotechnology 6 (2): 118-130.
Barzantny, H., Guttmann, S., Lässig, C., Brune, I., and Tauch, A. (2013). Transcriptional control of lipid metabolism by the MarR-like regulator FamR and the global regulator GlxR in the lipophilic axilla isolateCorynebacterium jeikeiumK411. Microbial Biotechnology 6, 118-130.
Barzantny, H., et al., 2013. Transcriptional control of lipid metabolism by the MarR-like regulator FamR and the global regulator GlxR in the lipophilic axilla isolateCorynebacterium jeikeiumK411. Microbial Biotechnology, 6(2), p 118-130.
H. Barzantny, et al., “Transcriptional control of lipid metabolism by the MarR-like regulator FamR and the global regulator GlxR in the lipophilic axilla isolateCorynebacterium jeikeiumK411”, Microbial Biotechnology, vol. 6, 2013, pp. 118-130.
Barzantny, H., Guttmann, S., Lässig, C., Brune, I., Tauch, A.: Transcriptional control of lipid metabolism by the MarR-like regulator FamR and the global regulator GlxR in the lipophilic axilla isolateCorynebacterium jeikeiumK411. Microbial Biotechnology. 6, 118-130 (2013).
Barzantny, Helena, Guttmann, Sarah, Lässig, Charlotte, Brune, Iris, and Tauch, Andreas. “Transcriptional control of lipid metabolism by the MarR-like regulator FamR and the global regulator GlxR in the lipophilic axilla isolateCorynebacterium jeikeiumK411”. Microbial Biotechnology 6.2 (2013): 118-130.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Transcriptional regulation of the iac locus from Acinetobacter baumannii by the phytohormone indole-3-acetic acid.
Shu HY, Lin LC, Lin TK, Chen HP, Yang HH, Peng KC, Lin GH., Antonie Van Leeuwenhoek 107(5), 2015
PMID: 25726082

41 References

Daten bereitgestellt von Europe PubMed Central.

RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism.
Auchter M, Cramer A, Huser A, Ruckert C, Emer D, Schwarz P, Arndt A, Lange C, Kalinowski J, Wendisch VF, Eikmanns BJ., J. Biotechnol. 154(2-3), 2010
PMID: 20620178
Type II fatty acid synthesis is not a suitable antibiotic target for Gram-positive pathogens.
Brinster S, Lamberet G, Staels B, Trieu-Cuot P, Gruss A, Poyart C., Nature 458(7234), 2009
PMID: 19262672
Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step.
Chong S, Montello GE, Zhang A, Cantor EJ, Liao W, Xu MQ, Benner J., Nucleic Acids Res. 26(22), 1998
PMID: 9801307
Regulation of virulence by members of the MarR/SlyA family.
Ellison DW, Miller VL., Curr. Opin. Microbiol. 9(2), 2006
PMID: 16529980
Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants.
Grant SG, Jessee J, Bloom FR, Hanahan D., Proc. Natl. Acad. Sci. U.S.A. 87(12), 1990
PMID: 2162051
Corynebacterium jeikeium bacteremia in a hemodialyzed patient.
Ifantidou AM, Diamantidis MD, Tseliki G, Angelou AS, Christidou P, Papa A, Pentilas D., Int. J. Infect. Dis. 14 Suppl 3(), 2010
PMID: 20171132
Fatty acid metabolism by cutaneous bacteria and its role in axillary malodour
James AG, Casey J, Hyliands D, Mycock G., 2004
rpoB gene sequencing for identification of Corynebacterium species.
Khamis A, Raoult D, La Scola B., J. Clin. Microbiol. 42(9), 2004
PMID: 15364970
Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis.
Knoppova M, Phensaijai M, Vesely M, Zemanova M, Nesvera J, Patek M., Curr. Microbiol. 55(3), 2007
PMID: 17657537
Corynebacterium CDC group JK (Corynebacterium jeikeium) sepsis in haematological patients: a report of three cases and a systematic literature review.
van der Lelie H, Leverstein-Van Hall M, Mertens M, van Zaanen HC, van Oers RH, Thomas BL, von dem Borne AE, Kuijper EJ., Scand. J. Infect. Dis. 27(6), 1995
PMID: 8685637
Structure and function of the feed-forward loop network motif.
Mangan S, Alon U., Proc. Natl. Acad. Sci. U.S.A. 100(21), 2003
PMID: 14530388
Corynebacterium jeikeium endocarditis: a systematic overview spanning four decades.
Mookadam F, Cikes M, Baddour LM, Tleyjeh IM, Mookadam M., Eur. J. Clin. Microbiol. Infect. Dis. 25(6), 2006
PMID: 16767481
A specific bacterial aminoacylase cleaves odorant precursors secreted in the human axilla.
Natsch A, Gfeller H, Gygax P, Schmid J, Acuna G., J. Biol. Chem. 278(8), 2002
PMID: 12468539
Compounds and methods for inhibiting axillary malodour
Natsch A, Acuna G, Fournie-Zaluski M-C, Gfeller H., 2007
Skin lipids: their biochemical uniqueness.
Nicolaides N., Science 186(4158), 1974
PMID: 4607408
Cutaneous manifestations of Corynebacterium jeikeium sepsis.
Olson JM, Nguyen VQ, Yoo J, Kuechle MK., Int. J. Dermatol. 48(8), 2009
PMID: 19659870
Epidermal surface lipids.
Pappas A., Dermatoendocrinol 1(2), 2009
PMID: 20224687
ChIP-seq: advantages and challenges of a maturing technology.
Park PJ., Nat. Rev. Genet. 10(10), 2009
PMID: 19736561
Transcriptional repression: conserved and evolved features.
Payankaulam S, Li LM, Arnosti DN., Curr. Biol. 20(17), 2010
PMID: 20833321
MarR homologs with urate-binding signature.
Perera IC, Grove A., Protein Sci. 20(3), 2011
PMID: 21432936

Sambrook R, Russel DW., 2001
Corynebacterium glutamicum DNA is subjected to methylation-restriction in Escherichia coli.
Tauch A, Kirchner O, Wehmeier L, Kalinowski J, Puhler A., FEMS Microbiol. Lett. 123(3), 1994
PMID: 7988915
Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J., Curr. Microbiol. 45(5), 2002
PMID: 12232668
Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora.
Tauch A, Kaiser O, Hain T, Goesmann A, Weisshaar B, Albersmeier A, Bekel T, Bischoff N, Brune I, Chakraborty T, Kalinowski J, Meyer F, Rupp O, Schneiker S, Viehoever P, Puhler A., J. Bacteriol. 187(13), 2005
PMID: 15968079
Characterization of the microflora of the human axilla.
Taylor D, Daulby A, Grimshaw S, James G, Mercer J, Vaziri S., Int J Cosmet Sci 25(3), 2003
PMID: 18494895
Composition analysis of two batches of polysorbate 60 using MS and NMR techniques.
Vu Dang H, Gray AI, Watson D, Bates CD, Scholes P, Eccleston GM., J Pharm Biomed Anal 40(5), 2005
PMID: 16280224
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23163914
PubMed | Europe PMC

Suchen in

Google Scholar