Phosphotransferase system- (PTS-) mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains

Lindner S, Petrov D, Hagmann C, Henrich A, Krämer R, Eikmanns B, Wendisch VF, Seibold G (2013)
Applied and Environmental Microbiology 79(8): 2588-2595.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Lindner, SteffenUniBi; Petrov, Dimitar; Hagmann, Christian; Henrich, Alexander; Krämer, Reinhard; Eikmanns, Bernhard; Wendisch, Volker F.UniBi ; Seibold, Gerd
Abstract / Bemerkung
Corynebacterium glutamicum is particularly known for its industrial application in the production of amino acids. Amino acid overproduction comes along with a high NADPH demand, which is covered mainly by the oxidative part of the pentose phosphate pathway (PPP). In previous studies, the complete redirection of the carbon flux toward the PPP by chromosomal inactivation of the pgi gene, encoding the phosphoglucoisomerase, has been applied for the improvement of C. glutamicum amino acid production strains, but this was accompanied by severe negative effects on the growth characteristics. To investigate these effects in a genetically defined background, we deleted the pgi gene in the type strain C. glutamicum ATCC 13032. The resulting strain, C. glutamicum Delta pgi, lacked detectable phosphoglucoisomerase activity and grew poorly with glucose as the sole substrate. Apart from the already reported inhibition of the PPP by NADPH accumulation, we detected a drastic reduction of the phosphotransferase system (PTS)-mediated glucose uptake in C. glutamicum Delta pgi. Furthermore, Northern blot analyses revealed that expression of ptsG, which encodes the glucose-specific EII permease of the PTS, was abolished in this mutant. Applying our findings, we optimized L-lysine production in the model strain C. glutamicum DM1729 by deletion of pgi and overexpression of plasmid-encoded ptsG. L-Lysine yields and productivity with C. glutamicum Delta pgi(pBB1-ptsG) were significantly higher than those with C. glutamicum Delta pgi(pBB1). These results show that ptsG overexpression is required to overcome the repressed activity of PTS-mediated glucose uptake in pgi-deficient C. glutamicum strains, thus enabling efficient as well as fast L-lysine production.
Erscheinungsjahr
2013
Zeitschriftentitel
Applied and Environmental Microbiology
Band
79
Ausgabe
8
Seite(n)
2588-2595
ISSN
0099-2240
Page URI
https://pub.uni-bielefeld.de/record/2553923

Zitieren

Lindner S, Petrov D, Hagmann C, et al. Phosphotransferase system- (PTS-) mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains. Applied and Environmental Microbiology. 2013;79(8):2588-2595.
Lindner, S., Petrov, D., Hagmann, C., Henrich, A., Krämer, R., Eikmanns, B., Wendisch, V. F., et al. (2013). Phosphotransferase system- (PTS-) mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains. Applied and Environmental Microbiology, 79(8), 2588-2595. doi:10.1128/AEM.03231-12
Lindner, S., Petrov, D., Hagmann, C., Henrich, A., Krämer, R., Eikmanns, B., Wendisch, V. F., and Seibold, G. (2013). Phosphotransferase system- (PTS-) mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains. Applied and Environmental Microbiology 79, 2588-2595.
Lindner, S., et al., 2013. Phosphotransferase system- (PTS-) mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains. Applied and Environmental Microbiology, 79(8), p 2588-2595.
S. Lindner, et al., “Phosphotransferase system- (PTS-) mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains”, Applied and Environmental Microbiology, vol. 79, 2013, pp. 2588-2595.
Lindner, S., Petrov, D., Hagmann, C., Henrich, A., Krämer, R., Eikmanns, B., Wendisch, V.F., Seibold, G.: Phosphotransferase system- (PTS-) mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains. Applied and Environmental Microbiology. 79, 2588-2595 (2013).
Lindner, Steffen, Petrov, Dimitar, Hagmann, Christian, Henrich, Alexander, Krämer, Reinhard, Eikmanns, Bernhard, Wendisch, Volker F., and Seibold, Gerd. “Phosphotransferase system- (PTS-) mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains”. Applied and Environmental Microbiology 79.8 (2013): 2588-2595.

11 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Applications of CRISPR/Cas System to Bacterial Metabolic Engineering.
Cho S, Shin J, Cho BK., Int J Mol Sci 19(4), 2018
PMID: 29621180
The RamA regulon: complex regulatory interactions in relation to central metabolism in Corynebacterium glutamicum.
Shah A, Blombach B, Gauttam R, Eikmanns BJ., Appl Microbiol Biotechnol 102(14), 2018
PMID: 29804137
Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi).
Cleto S, Jensen JV, Wendisch VF, Lu TK., ACS Synth Biol 5(5), 2016
PMID: 26829286
Transcription of Sialic Acid Catabolism Genes in Corynebacterium glutamicum Is Subject to Catabolite Repression and Control by the Transcriptional Repressor NanR.
Uhde A, Brühl N, Goldbeck O, Matano C, Gurow O, Rückert C, Marin K, Wendisch VF, Krämer R, Seibold GM., J Bacteriol 198(16), 2016
PMID: 27274030
Increasing available NADH supply during succinic acid production by Corynebacterium glutamicum.
Zhou Z, Wang C, Chen Y, Zhang K, Xu H, Cai H, Chen Z., Biotechnol Prog 31(1), 2015
PMID: 25311136
The α-glucan phosphorylase MalP of Corynebacterium glutamicum is subject to transcriptional regulation and competitive inhibition by ADP-glucose.
Clermont L, Macha A, Müller LM, Derya SM, von Zaluskowski P, Eck A, Eikmanns BJ, Seibold GM., J Bacteriol 197(8), 2015
PMID: 25666133
Protein S-mycothiolation functions as redox-switch and thiol protection mechanism in Corynebacterium glutamicum under hypochlorite stress.
Chi BK, Busche T, Van Laer K, Bäsell K, Becher D, Clermont L, Seibold GM, Persicke M, Kalinowski J, Messens J, Antelmann H., Antioxid Redox Signal 20(4), 2014
PMID: 23886307
Metabolic engineering of Corynebacterium glutamicum for L-arginine production.
Park SH, Kim HU, Kim TY, Park JS, Kim SS, Lee SY., Nat Commun 5(), 2014
PMID: 25091334

63 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 2007
L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum.
Blombach B, Schreiner ME, Holatko J, Bartek T, Oldiges M, Eikmanns BJ., Appl. Environ. Microbiol. 73(7), 2007
PMID: 17293513
Corynebacterium glutamicum tailored for high-yield L-valine production.
Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ., Appl. Microbiol. Biotechnol. 79(3), 2008
PMID: 18379776
Response of the central metabolism of Corynebacterium glutamicum to different flux burdens.
Marx A, Striegel K, de Graaf AA, Sahm H, Eggeling L., Biotechnol. Bioeng. 56(2), 1997
PMID: 18636622
A functionally split pathway for lysine synthesis in Corynebacterium glutamicium.
Schrumpf B, Schwarzer A, Kalinowski J, Puhler A, Eggeling L, Sahm H., J. Bacteriol. 173(14), 1991
PMID: 1906065
Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum.
Marienhagen J, Kennerknecht N, Sahm H, Eggeling L., J. Bacteriol. 187(22), 2005
PMID: 16267288
The -lysine story: from metabolic pathways to industrial production
Wittmann C, Becker J., 2007
Importance of NADPH supply for improved L-valine formation in Corynebacterium glutamicum.
Bartek T, Blombach B, Zonnchen E, Makus P, Lang S, Eikmanns BJ, Oldiges M., Biotechnol. Prog. 26(2), 2010
PMID: 20014412
A novel gnd mutation leading to increased L-lysine production in Corynebacterium glutamicum.
Ohnishi J, Katahira R, Mitsuhashi S, Kakita S, Ikeda M., FEMS Microbiol. Lett. 242(2), 2005
PMID: 15621447
A highly specific monomeric isocitrate dehydrogenase from Corynebacterium glutamicum.
Chen R, Yang H., Arch. Biochem. Biophys. 383(2), 2000
PMID: 11185559
Cloning of the malic enzyme gene from Corynebacterium glutamicum and role of the enzyme in lactate metabolism.
Gourdon P, Baucher MF, Lindley ND, Guyonvarch A., Appl. Environ. Microbiol. 66(7), 2000
PMID: 10877795
Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose.
Dominguez H, Rollin C, Guyonvarch A, Guerquin-Kern JL, Cocaign-Bousquet M, Lindley ND., Eur. J. Biochem. 254(1), 1998
PMID: 9652400
Corynebacterium glutamicum tailored for efficient isobutanol production.
Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ., Appl. Environ. Microbiol. 77(10), 2011
PMID: 21441331
Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose.
Kiefer P, Heinzle E, Zelder O, Wittmann C., Appl. Environ. Microbiol. 70(1), 2004
PMID: 14711646
Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase.
Marx A, Eikmanns BJ, Sahm H, de Graaf AA, Eggeling L., Metab. Eng. 1(1), 1999
PMID: 10935753
Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum--over expression and modification of G6P dehydrogenase.
Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C., J. Biotechnol. 132(2), 2007
PMID: 17624457
Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum.
Marx A, Hans S, Mockel B, Bathe B, de Graaf AA, McCormack AC, Stapleton C, Burke K, O'Donohue M, Dunican LK., J. Biotechnol. 104(1-3), 2003
PMID: 12948638
New phosphoglucose isomerase mutants of Escherichia coli.
Vinopal RT, Hillman JD, Schulman H, Reznikoff WS, Fraenkel DG., J. Bacteriol. 122(3), 1975
PMID: 1097391
The udhA gene of Escherichia coli encodes a soluble pyridine nucleotide transhydrogenase.
Boonstra B, French CE, Wainwright I, Bruce NC., J. Bacteriol. 181(3), 1999
PMID: 9922271
Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA.
Canonaco F, Hess TA, Heri S, Wang T, Szyperski T, Sauer U., FEMS Microbiol. Lett. 204(2), 2001
PMID: 11731130
Genetic basis of growth adaptation of Escherichia coli after deletion of pgi, a major metabolic gene.
Charusanti P, Conrad TM, Knight EM, Venkataraman K, Fong NL, Xie B, Gao Y, Palsson BO., PLoS Genet. 6(11), 2010
PMID: 21079674
Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria.
Postma PW, Lengeler JW, Jacobson GR., Microbiol. Rev. 57(3), 1993
PMID: 8246840
RNA, but not protein partners, is directly responsible for translational silencing by a bacterial Hfq-binding small RNA.
Maki K, Uno K, Morita T, Aiba H., Proc. Natl. Acad. Sci. U.S.A. 105(30), 2008
PMID: 18650387
Phosphotransferase system-independent glucose utilization in corynebacterium glutamicum by inositol permeases and glucokinases.
Lindner SN, Seibold GM, Henrich A, Kramer R, Wendisch VF., Appl. Environ. Microbiol. 77(11), 2011
PMID: 21478323
Impact of a new glucose utilization pathway in amino acid-producing Corynebacterium glutamicum.
Lindner SN, Seibold GM, Kramer R, Wendisch VF., Bioeng Bugs 2(5), 2011
PMID: 22008639

Sambrook J, Russell D., 2001
Glycogen formation in Corynebacterium glutamicum and role of ADP-glucose pyrophosphorylase.
Seibold G, Dempf S, Schreiner J, Eikmanns BJ., Microbiology (Reading, Engl.) 153(Pt 4), 2007
PMID: 17379737
Roles of maltodextrin and glycogen phosphorylases in maltose utilization and glycogen metabolism in Corynebacterium glutamicum.
Seibold GM, Wurst M, Eikmanns BJ., Microbiology (Reading, Engl.) 155(Pt 2), 2009
PMID: 19202084
Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase.
Eikmanns BJ, Thum-Schmitz N, Eggeling L, Ludtke KU, Sahm H., Microbiology (Reading, Engl.) 140 ( Pt 8)(), 1994
PMID: 7522844
Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J., Curr. Microbiol. 45(5), 2002
PMID: 12232668
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
Increased glucose utilization in Corynebacterium glutamicum by use of maltose, and its application for the improvement of L-valine productivity.
Krause FS, Henrich A, Blombach B, Kramer R, Eikmanns BJ, Seibold GM., Appl. Environ. Microbiol. 76(1), 2009
PMID: 19880641
Cloning, sequence analysis, expression and inactivation of the Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase and acetate kinase.
Reinscheid DJ, Schnicke S, Rittmann D, Zahnow U, Sahm H, Eikmanns BJ., Microbiology (Reading, Engl.) 145 ( Pt 2)(), 1999
PMID: 10075432
Metabolic and physiological studies of Corynebacterium glutamicum mutants.
Park SM, Sinskey AJ, Stephanopoulos G., Biotechnol. Bioeng. 55(6), 1997
PMID: 18636597
Expression of the pntAB genes encoding a membrane-bound transhydrogenase in improves -lysine formation
Kabus A, Georgi T, Wendisch VF, Bott M., 2007
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
The complete genome sequence of Escherichia coli K-12.
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y., Science 277(5331), 1997
PMID: 9278503

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23396334
PubMed | Europe PMC

Suchen in

Google Scholar