Nitrogen-Doped Graphene and Its Iron-Based Composite As Efficient Electrocatalysts for Oxygen Reduction Reaction

Parvez K, Yang S, Hernandez Y, Winter A, Turchanin A, Feng X, Muellen K (2012)
Acs Nano 6(11): 9541-9550.

Zeitschriftenaufsatz | Veröffentlicht| Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor*in
Parvez, Khaled; Yang, Shubin; Hernandez, Yenny; Winter, AndreasUniBi; Turchanin, AndreyUniBi; Feng, Xinliang; Muellen, Klaus
Abstract / Bemerkung
The high cost of platinum-based electrocatalysts for the oxygen reduction reaction (ORR) has hindered the practical application of fuel cells. Thanks to its unique chemical and structural properties, nitrogen-doped graphene (NG) is among the most promising metal-free catalysts for replacing platinum. In this work, we have developed a cost-effective synthesis of NG by using cyanamide as a nitrogen source and graphene oxide as a precursor, which led to high and controllable nitrogen contents (4.0% to 12.0%) after pyrolysis. NG thermally treated at 900 degrees C shows a stable methanol crossover effect, high current density (6.67 mA cm(-2)), and durability (similar to 87% after 10 000 cycles) when catalyzing ORR in alkaline solution : Further, iron (Fe) nanoparticles could be incorporated Into NG with the aid of Fe(III) chloride in the synthetic process. This allows one to examine the Influence of non noble metals on the. electrocatalytic performance. Remarkably, we found that NG supported with 5 wt %Fe nanoparticles displayed an excellent methanol crossover effect and high current density (8.20 mA cm(-2)) in an alkaline solution. Moreover, Fe-incorporated NG showed almost four electron transfer processes and superior stability in both alkaline (similar to 94%) and acidic (similar to 85%) solutions, which outperformed the platinum and NG-based catalysts.
Stichworte
oxygen; iron coordination; graphene oxide; nitrogen-doped graphene; stability; reduction reaction
Erscheinungsjahr
2012
Zeitschriftentitel
Acs Nano
Band
6
Ausgabe
11
Seite(n)
9541-9550
ISSN
1936-0851
eISSN
1936-086X
Page URI
https://pub.uni-bielefeld.de/record/2553472

Zitieren

Parvez K, Yang S, Hernandez Y, et al. Nitrogen-Doped Graphene and Its Iron-Based Composite As Efficient Electrocatalysts for Oxygen Reduction Reaction. Acs Nano. 2012;6(11):9541-9550.
Parvez, K., Yang, S., Hernandez, Y., Winter, A., Turchanin, A., Feng, X., & Muellen, K. (2012). Nitrogen-Doped Graphene and Its Iron-Based Composite As Efficient Electrocatalysts for Oxygen Reduction Reaction. Acs Nano, 6(11), 9541-9550. doi:10.1021/nn302674k
Parvez, K., Yang, S., Hernandez, Y., Winter, A., Turchanin, A., Feng, X., and Muellen, K. (2012). Nitrogen-Doped Graphene and Its Iron-Based Composite As Efficient Electrocatalysts for Oxygen Reduction Reaction. Acs Nano 6, 9541-9550.
Parvez, K., et al., 2012. Nitrogen-Doped Graphene and Its Iron-Based Composite As Efficient Electrocatalysts for Oxygen Reduction Reaction. Acs Nano, 6(11), p 9541-9550.
K. Parvez, et al., “Nitrogen-Doped Graphene and Its Iron-Based Composite As Efficient Electrocatalysts for Oxygen Reduction Reaction”, Acs Nano, vol. 6, 2012, pp. 9541-9550.
Parvez, K., Yang, S., Hernandez, Y., Winter, A., Turchanin, A., Feng, X., Muellen, K.: Nitrogen-Doped Graphene and Its Iron-Based Composite As Efficient Electrocatalysts for Oxygen Reduction Reaction. Acs Nano. 6, 9541-9550 (2012).
Parvez, Khaled, Yang, Shubin, Hernandez, Yenny, Winter, Andreas, Turchanin, Andrey, Feng, Xinliang, and Muellen, Klaus. “Nitrogen-Doped Graphene and Its Iron-Based Composite As Efficient Electrocatalysts for Oxygen Reduction Reaction”. Acs Nano 6.11 (2012): 9541-9550.

79 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Developing Graphene-Based Nanohybrids for Electrochemical Sensing.
Song H, Zhang X, Liu Y, Su Z., Chem Rec 19(2-3), 2019
PMID: 30182467
Oxygen Reduction Reaction Activity of Microwave Mediated Solvothermal Synthesized CeO2/g-C3N4 Nanocomposite.
Soren S, Hota I, Debnath AK, Aswal DK, Varadwaj KSK, Parhi P., Front Chem 7(), 2019
PMID: 31245353
N, S Dual-Doped Carbon Derived from Dye Sludge by Using Polymeric Flocculant as Soft Template.
Luan D, Wu L, Wei T, Liu L, Lv Y, Yu F, Chen L, Shi Y., Nanomaterials (Basel) 9(7), 2019
PMID: 31324023
Catalytic Effects in Lithium-Sulfur Batteries: Promoted Sulfur Transformation and Reduced Shuttle Effect.
Liu D, Zhang C, Zhou G, Lv W, Ling G, Zhi L, Yang QH., Adv Sci (Weinh) 5(1), 2018
PMID: 29375960
Ultrafast microwave-assisted synthesis of nitrogen-doped carbons as electrocatalysts for oxygen reduction reaction.
Xu J, Zhang R, Lu S, Liu H, Li Z, Zhang X, Ding S., Nanotechnology 29(30), 2018
PMID: 29749348
Facile synthesis of 3D N-doped porous carbon nanosheets as highly active electrocatalysts toward the reduction of hydrogen peroxide.
Lu N, Zhang T, Yan X, Gu Y, Liu H, Xu Z, Xu H, Li X, Zhang Z, Yang M., Nanoscale 10(31), 2018
PMID: 30044462
Direct mapping of chemical oxidation of individual graphene sheets through dynamic force measurements at the nanoscale.
Froning JP, Lazar P, Pykal M, Li Q, Dong M, Zbořil R, Otyepka M., Nanoscale 9(1), 2017
PMID: 27735008
Nanostructured material-based biofuel cells: recent advances and future prospects.
Zhao CE, Gai P, Song R, Chen Y, Zhang J, Zhu JJ., Chem Soc Rev 46(5), 2017
PMID: 28211932
Mechano-regulated surface for manipulating liquid droplets.
Tang X, Zhu P, Tian Y, Zhou X, Kong T, Wang L., Nat Commun 8(), 2017
PMID: 28374739
The role of iron nitrides in the Fe-N-C catalysis system towards the oxygen reduction reaction.
Wang M, Yang Y, Liu X, Pu Z, Kou Z, Zhu P, Mu S., Nanoscale 9(22), 2017
PMID: 28540947
The physics and chemistry of graphene-on-surfaces.
Zhao G, Li X, Huang M, Zhen Z, Zhong Y, Chen Q, Zhao X, He Y, Hu R, Yang T, Zhang R, Li C, Kong J, Xu JB, Ruoff RS, Zhu H., Chem Soc Rev 46(15), 2017
PMID: 28678225
Edges of graphene and carbon nanotubes with high catalytic performance for the oxygen reduction reaction.
Xu Z, Fan X, Li H, Fu H, Lau WM, Zhao X., Phys Chem Chem Phys 19(31), 2017
PMID: 28745738
Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media.
Gupta S, Kellogg W, Xu H, Liu X, Cho J, Wu G., Chem Asian J 11(1), 2016
PMID: 26247625
N-Doped graphene frameworks with superhigh surface area: excellent electrocatalytic performance for oxygen reduction.
Cui HJ, Yu HM, Zheng JF, Wang ZJ, Zhu YY, Jia SP, Jia J, Zhu ZP., Nanoscale 8(5), 2016
PMID: 26763656
One-step electrochemical synthesis of nitrogen and sulfur co-doped, high-quality graphene oxide.
Parvez K, Rincón RA, Weber NE, Cha KC, Venkataraman SS., Chem Commun (Camb) 52(33), 2016
PMID: 27040326
Carbon Nanomembranes.
Turchanin A, Gölzhäuser A., Adv Mater 28(29), 2016
PMID: 27281234
High-Performance Direct Methanol Fuel Cells with Precious-Metal-Free Cathode.
Li Q, Wang T, Havas D, Zhang H, Xu P, Han J, Cho J, Wu G., Adv Sci (Weinh) 3(11), 2016
PMID: 27980990
Electronic Coupling of Cobalt Nanoparticles to Nitrogen-Doped Graphene for Oxygen Reduction and Evolution Reactions.
Xu C, Lu M, Yan B, Zhan Y, Balaya P, Lu L, Lee JY., ChemSusChem 9(21), 2016
PMID: 27739654
Ionic liquids as precursors for efficient mesoporous iron-nitrogen-doped oxygen reduction electrocatalysts.
Li Z, Li G, Jiang L, Li J, Sun G, Xia C, Li F., Angew Chem Int Ed Engl 54(5), 2015
PMID: 25504819
Enhancement of ORR catalytic activity by multiple heteroatom-doped carbon materials.
Kim DW, Li OL, Saito N., Phys Chem Chem Phys 17(1), 2015
PMID: 25406572
High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties.
Yeom DY, Jeon W, Tu ND, Yeo SY, Lee SS, Sung BJ, Chang H, Lim JA, Kim H., Sci Rep 5(), 2015
PMID: 25940534
Soft-Templating Synthesis of N-Doped Mesoporous Carbon Nanospheres for Enhanced Oxygen Reduction Reaction.
Bayatsarmadi B, Zheng Y, Jaroniec M, Qiao SZ., Chem Asian J 10(7), 2015
PMID: 25891306
On the Role of Metals in Nitrogen-Doped Carbon Electrocatalysts for Oxygen Reduction.
Masa J, Xia W, Muhler M, Schuhmann W., Angew Chem Int Ed Engl 54(35), 2015
PMID: 26136398
Heteroatom substituted and decorated graphene: preparation and applications.
Chen N, Huang X, Qu L., Phys Chem Chem Phys 17(48), 2015
PMID: 26465923
Residual metals present in "metal-free" N-doped carbons.
Jin X, Zhang G, Hao Y, Chang Z, Sun X., Chem Commun (Camb) 51(85), 2015
PMID: 26355303
Chemical modification of graphene aerogels for electrochemical capacitor applications.
Hong JY, Wie JJ, Xu Y, Park HS., Phys Chem Chem Phys 17(46), 2015
PMID: 26536234
25th anniversary article: Chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices.
Maiti UN, Lee WJ, Lee JM, Oh Y, Kim JY, Kim JE, Shim J, Han TH, Kim SO., Adv Mater 26(1), 2014
PMID: 24123343
Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction.
Wei W, Liang H, Parvez K, Zhuang X, Feng X, Müllen K., Angew Chem Int Ed Engl 53(6), 2014
PMID: 24459087
One-step replication and enhanced catalytic activity for cathodic oxygen reduction of the mesostructured Co3O4/carbon composites.
Wang Y, Cui X, Chen L, Wei C, Cui F, Yao H, Shi J, Li Y., Dalton Trans 43(10), 2014
PMID: 24469013
Post modification of MOF derived carbon via g-C3N4 entrapment for an efficient metal-free oxygen reduction reaction.
Pandiaraj S, Aiyappa HB, Banerjee R, Kurungot S., Chem Commun (Camb) 50(25), 2014
PMID: 24551877
25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials.
Huang X, Tan C, Yin Z, Zhang H., Adv Mater 26(14), 2014
PMID: 24615947
Nitrogen-doped holey graphitic carbon from 2D covalent organic polymers for oxygen reduction.
Xiang Z, Cao D, Huang L, Shui J, Wang M, Dai L., Adv Mater 26(20), 2014
PMID: 24664790
Nanostructured carbon-based cathode catalysts for nonaqueous lithium-oxygen batteries.
Li Q, Cao R, Cho J, Wu G., Phys Chem Chem Phys 16(27), 2014
PMID: 24715024
Strongly veined carbon nanoleaves as a highly efficient metal-free electrocatalyst.
Ye TN, Lv LB, Li XH, Xu M, Chen JS., Angew Chem Int Ed Engl 53(27), 2014
PMID: 24854797
Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications.
Lee WJ, Maiti UN, Lee JM, Lim J, Han TH, Kim SO., Chem Commun (Camb) 50(52), 2014
PMID: 24710592
Metal-nitrogen doping of mesoporous carbon/graphene nanosheets by self-templating for oxygen reduction electrocatalysts.
Li S, Wu D, Liang H, Wang J, Zhuang X, Mai Y, Su Y, Feng X., ChemSusChem 7(11), 2014
PMID: 25213723
ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts.
Zhong HX, Wang J, Zhang YW, Xu WL, Xing W, Xu D, Zhang YF, Zhang XB., Angew Chem Int Ed Engl 53(51), 2014
PMID: 25331053
Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes.
Wang ZL, Xu D, Xu JJ, Zhang XB., Chem Soc Rev 43(22), 2014
PMID: 24056780
Dimension-tailored functional graphene structures for energy conversion and storage.
Zhang J, Zhao F, Zhang Z, Chen N, Qu L., Nanoscale 5(8), 2013
PMID: 23467313
Focusing on luminescent graphene quantum dots: current status and future perspectives.
Li L, Wu G, Yang G, Peng J, Zhao J, Zhu JJ., Nanoscale 5(10), 2013
PMID: 23579482
Highly efficient oxygen reduction electrocatalysts based on winged carbon nanotubes.
Cheng Y, Zhang H, Varanasi CV, Liu J., Sci Rep 3(), 2013
PMID: 24217312

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23050839
PubMed | Europe PMC

Suchen in

Google Scholar