Chemical Adaptability: The Integration of Different Kinds of Matter into Giant Molecular Metal Oxides

Müller A, Merca A, Al-Karawi AJM, Garai S, Bögge H, Hou G, Wu L, Haupt ETK, Rehder D, Haso F, Liu T (2012)
Chemistry 18(51): 16310-16318.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Müller, AchimUniBi ; Merca, AliceUniBi; Al-Karawi, Ahmed Jasim M.; Garai, Somenath; Bögge, HartmutUniBi; Hou, Guangfeng; Wu, Lixin; Haupt, Erhard T. K.; Rehder, Dieter; Haso, Fadi; Liu, Tianbo
Abstract / Bemerkung
Unique properties of the two giant wheel-shaped molybdenum-oxides of the type {Mo154}=[{Mo2}{Mo8}{Mo1}]14 (1) and {Mo176}=[{Mo2}{Mo8}{Mo1}]16 (2) that have the same building blocks either 14 or 16 times, respectively, are considered and show a chemical adaptability as a new phenomenon regarding the integration of a large number of appropriate cations and anions, for example, in form of the large salt-like {M(SO4)}16 rings (M=K+, NH4+), while the two resulting {Mo146 (K(SO4))16} (3) and {Mo146 (NH4(SO4))16} (4) type hybrid compounds have the same shape as the parent ring structures. The chemical adaptability, which also allows the integration of anions and cations even at the same positions in the {Mo4O6}-type units of 1 and 2, is caused by easy changes in constitution by reorganisation and simultaneous release of (some) building blocks (one example: two opposite orientations of the same functional groups, that is, of H2O{Mo?O} (I) and O?{Mo(H2O)} (II) are possible). Whereas Cu2+ in [(H4CuII5)MoV28MoVI114O432(H2O)58]26- (5?a) is simply coordinated to two parent O2- ions of {Mo4O6} and to two fragments of type II, the SO42- integration in 3 and 4 occurs through the substitution of two oxo ligands of {Mo4O6} as well as two H2O ligands of fragment I. Complexes 3 and now 4 were characterised by different physical methods, for example, solutions of 4 in DMSO with sophisticated NMR spectroscopy (EXSY, DOSY and HSQC). The NH4+ ions integrated in the cluster anion of 4 communicate with those in solution in the sense that the related H+ ion exchange is in equilibrium. The important message: the reported chemical adaptability has its formal counterpart in solutions of molybdates, which can form unique dynamic libraries containing constituents/building blocks that may form and break reversibly and can lead to the isolation of a variety of giant clusters with unusual properties.
Stichworte
inclusion compounds; chemical adaptability; polyoxometalates; NMR spectroscopy; solution chemistry
Erscheinungsjahr
2012
Zeitschriftentitel
Chemistry
Band
18
Ausgabe
51
Seite(n)
16310-16318
ISSN
0947-6539
Page URI
https://pub.uni-bielefeld.de/record/2553364

Zitieren

Müller A, Merca A, Al-Karawi AJM, et al. Chemical Adaptability: The Integration of Different Kinds of Matter into Giant Molecular Metal Oxides. Chemistry. 2012;18(51):16310-16318.
Müller, A., Merca, A., Al-Karawi, A. J. M., Garai, S., Bögge, H., Hou, G., Wu, L., et al. (2012). Chemical Adaptability: The Integration of Different Kinds of Matter into Giant Molecular Metal Oxides. Chemistry, 18(51), 16310-16318. doi:10.1002/chem.201203186
Müller, Achim, Merca, Alice, Al-Karawi, Ahmed Jasim M., Garai, Somenath, Bögge, Hartmut, Hou, Guangfeng, Wu, Lixin, et al. 2012. “Chemical Adaptability: The Integration of Different Kinds of Matter into Giant Molecular Metal Oxides”. Chemistry 18 (51): 16310-16318.
Müller, A., Merca, A., Al-Karawi, A. J. M., Garai, S., Bögge, H., Hou, G., Wu, L., Haupt, E. T. K., Rehder, D., Haso, F., et al. (2012). Chemical Adaptability: The Integration of Different Kinds of Matter into Giant Molecular Metal Oxides. Chemistry 18, 16310-16318.
Müller, A., et al., 2012. Chemical Adaptability: The Integration of Different Kinds of Matter into Giant Molecular Metal Oxides. Chemistry, 18(51), p 16310-16318.
A. Müller, et al., “Chemical Adaptability: The Integration of Different Kinds of Matter into Giant Molecular Metal Oxides”, Chemistry, vol. 18, 2012, pp. 16310-16318.
Müller, A., Merca, A., Al-Karawi, A.J.M., Garai, S., Bögge, H., Hou, G., Wu, L., Haupt, E.T.K., Rehder, D., Haso, F., Liu, T.: Chemical Adaptability: The Integration of Different Kinds of Matter into Giant Molecular Metal Oxides. Chemistry. 18, 16310-16318 (2012).
Müller, Achim, Merca, Alice, Al-Karawi, Ahmed Jasim M., Garai, Somenath, Bögge, Hartmut, Hou, Guangfeng, Wu, Lixin, Haupt, Erhard T. K., Rehder, Dieter, Haso, Fadi, and Liu, Tianbo. “Chemical Adaptability: The Integration of Different Kinds of Matter into Giant Molecular Metal Oxides”. Chemistry 18.51 (2012): 16310-16318.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A nano-scale triangular ring cluster of indium-selenide: the structure and templating effect.
Wang YH, Wu J, Zhao XW, Qian LW, Zhu QY, Dai J., Chem Commun (Camb) 51(53), 2015
PMID: 26050598
An unstable paramagnetic isopolyoxomolybdate intermediate non-homogeneously reduced at different sites and trapped in a host based on chemical adaptability.
Merca A, Garai S, Bögge H, Haupt ET, Ghosh A, López X, Poblet JM, Averseng F, Che M, Müller A., Angew Chem Int Ed Engl 52(45), 2013
PMID: 24108525

95 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0

Müller, Chem. Commun. (), 1999
Soluble molybdenum blues-"des Pudels Kern".
Muller A, Serain C., Acc. Chem. Res. 33(1), 2000
PMID: 10639070

Long, Angew. Chem. 122(), 2010
Polyoxometalates: building blocks for functional nanoscale systems.
Long DL, Tsunashima R, Cronin L., Angew. Chem. Int. Ed. Engl. 49(10), 2010
PMID: 20131346
Towards polyoxometalate-integrated nanosystems.
Long DL, Cronin L., Chemistry 12(14), 2006
PMID: 16416497
Functionalization of polyoxometalates: towards advanced applications in catalysis and materials science.
Proust A, Thouvenot R, Gouzerh P., Chem. Commun. (Camb.) (16), 2008
PMID: 18401495

Gouzerh, Actual. Chim. 298(), 2006

Müller, Struct. Bonding 96(), 2000

Müller, 2004
Polyoxometalates: Very Large Clusters-Nanoscale Magnets.
Muller A, Peters F, Pope MT, Gatteschi D., Chem. Rev. 98(1), 1998
PMID: 11851505

Zhong, Angew. Chem. 123(), 2011
A nanosized molybdenum oxide wheel with a unique electronic-necklace structure: STM study with submolecular resolution.
Zhong D, Sousa FL, Muller A, Chi L, Fuchs H., Angew. Chem. Int. Ed. Engl. 50(31), 2011
PMID: 21717545

Müller, Chem. Eur. J. 5(), 1999
Unveiling the transient template in the self-assembly of a molecular oxide nanowheel.
Miras HN, Cooper GJ, Long DL, Bogge H, Muller A, Streb C, Cronin L., Science 327(5961), 2010
PMID: 20044572

Noro, Angew. Chem. 121(), 2009
Adsorption and catalytic properties of the inner nanospace of a gigantic ring-shaped polyoxometalate cluster.
Noro S, Tsunashima R, Kamiya Y, Uemura K, Kita H, Cronin L, Akutagawa T, Nakamura T., Angew. Chem. Int. Ed. Engl. 48(46), 2009
PMID: 19824029

Tsuda, Angew. Chem. 116(), 2004
A molybdenum crown cluster forms discrete inorganic-organic nanocomposites with metalloporphyrins.
Tsuda A, Hirahara E, Kim YS, Tanaka H, Kawai T, Aida T., Angew. Chem. Int. Ed. Engl. 43(46), 2004
PMID: 15389887

Müller, Nature 397(), 1999

Schemberg, Angew. Chem. 119(), 2007
Towards biological supramolecular chemistry: a variety of pocket-templated, individual metal oxide cluster nucleations in the cavity of a mo/w-storage protein.
Schemberg J, Schneider K, Demmer U, Warkentin E, Muller A, Ermler U., Angew. Chem. Int. Ed. Engl. 46(14), 2007
PMID: 17304608

Schemberg, Angew. Chem. 119(), 2007

AUTHOR UNKNOWN, Angew. Chem. Int. Ed. 46(), 2007

AUTHOR UNKNOWN, 0
Nanoscale assemblies of gigantic molecular {Mo154}-rings: (dimethyldioctadecylammonium)20[Mo154O462H8(H2O)70].
Akutagawa T, Jin R, Tunashima R, Noro S, Cronin L, Nakamura T., Langmuir 24(1), 2007
PMID: 18041852
Structure, magnetism, and ionic conductivity of the gigantic {Mo176}-wheel assembly: Na15Fe3Co16[Mo176O528H3(H2O)80]Cl27 x 450 H2O.
Imai H, Akutagawa T, Kudo F, Ito M, Toyoda K, Noro S, Cronin L, Nakamura T., J. Am. Chem. Soc. 131(38), 2009
PMID: 19731960

Fan, 2011

Tang, 2010

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Cotton, 1999

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Müller, Angew. Chem. 114(), 2002
Inorganic chemistry goes protein size: a Mo368 nano-hedgehog initiating nanochemistry by symmetry breaking.
Muller A, Beckmann E, Bogge H, Schmidtmann M, Dress A., Angew. Chem. Int. Ed. Engl. 41(7), 2002
PMID: 12491247

Müller, Polyhedron 23(), 2004

Müller, Angew. Chem. 112(), 2000
Thirty Electrons "Trapped" in a Spherical Matrix: A Molybdenum Oxide-Based Nanostructured Keplerate Reduced by 36 Electrons.
Muller A, Shah SQ, Bogge H, Schmidtmann M, Kogerler P, Hauptfleisch B, Leiding S, Wittler K., Angew. Chem. Int. Ed. Engl. 39(9), 2000
PMID: 10820451

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Müller, Angew. Chem. 110(), 1998
Formation of a Ring-Shaped Reduced "Metal Oxide" with the Simple Composition [(MoO3 )176 (H2 O)80 H32 ].
Muller A, Krickemeyer E, Bogge H, Schmidtmann M, Beugholt C, Kogerler P, Lu C., Angew. Chem. Int. Ed. Engl. 37(9), 1998
PMID: 29711236

Jiang, Chem. Commun. (), 1998

Müller, Chem. Commun. (), 1998

Müller, Z. Anorg. Allg. Chem. 625(), 1999

Alam, Angew. Chem. 120(), 2008
Directed 1D assembly of a ring-shaped inorganic nanocluster templated by an organic rigid-rod molecule: an inorganic/organic polypseudorotaxane.
Alam MA, Kim YS, Ogawa S, Tsuda A, Ishii N, Aida T., Angew. Chem. Int. Ed. Engl. 47(11), 2008
PMID: 18257008

AUTHOR UNKNOWN, 0

Cronin, 2003

Müller, Inorg. Synth. 34(), 2004

AUTHOR UNKNOWN, 0

Todea, Angew. Chem. 122(), 2010
Porous capsules {(M)M(5)}(12)Fe(III) (30) (M=Mo(VI), W(VI)): sphere surface supramolecular chemistry with 20 ammonium ions, related solution properties, and tuning of magnetic exchange interactions.
Todea AM, Merca A, Bogge H, Glaser T, Pigga JM, Langston ML, Liu T, Prozorov R, Luban M, Schroder C, Casey WH, Muller A., Angew. Chem. Int. Ed. Engl. 49(3), 2010
PMID: 20013836
Molecular weights of cyclic and hollow clusters measured by DOSY NMR spectroscopy.
Floquet S, Brun S, Lemonnier JF, Henry M, Delsuc MA, Prigent Y, Cadot E, Taulelle F., J. Am. Chem. Soc. 131(47), 2009
PMID: 19904936

AUTHOR UNKNOWN, 0
Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles.
Liu T, Diemann E, Li H, Dress AW, Muller A., Nature 426(6962), 2003
PMID: 14603315
Deprotonations and charges of well-defined {Mo72Fe30} nanoacids simply stepwise tuned by pH allow control/variation of related self-assembly processes.
Liu T, Imber B, Diemann E, Liu G, Cokleski K, Li H, Chen Z, Muller A., J. Am. Chem. Soc. 128(49), 2006
PMID: 17147404
Charge regulation as a stabilization mechanism for shell-like assemblies of polyoxometalates.
Verhoeff AA, Kistler ML, Bhatt A, Pigga J, Groenewold J, Klokkenburg M, Veen S, Roy S, Liu T, Kegel WK., Phys. Rev. Lett. 99(6), 2007
PMID: 17930844

AUTHOR UNKNOWN, 0

Müller, Angew. Chem. 113(), 2001

AUTHOR UNKNOWN, 0

Müller, Chem. Commun. (), 2001
Mimicking oxide surfaces: different types of defects and ligand coordination at well defined positions of a molybdenum oxide based nanocluster.
Muller A, Maiti R, Schmidtmann M, Bogge H, Das SK, Zhang W., Chem. Commun. (Camb.) (20), 2001
PMID: 12240195

Bowman, Angew. Chem. 124(), 2012
Covalent adaptable networks: reversible bond structures incorporated in polymer networks.
Bowman CN, Kloxin CJ., Angew. Chem. Int. Ed. Engl. 51(18), 2012
PMID: 22389302
Biochemistry. A cold editor makes the adaptation.
Ohman M., Science 335(6070), 2012
PMID: 22344432

Cronin, Angew. Chem. 114(), 2002
"Molecular symmetry breakers" generating metal-oxide-based nanoobject fragments as synthons for complex structures: [[Mo(128)Eu(4)O(388)H(10)(H(2)O)(81)](2)](20-), a giant-cluster dimer.
Cronin L, Beugholt C, Krickemeyer E, Schmidtmann M, Bogge H, Kogerler P, Luong TK, Muller A., Angew. Chem. Int. Ed. Engl. 41(15), 2002
PMID: 12203492

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Ito, Eur. J. Inorg. Chem. (), 2009

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23180718
PubMed | Europe PMC

Suchen in

Google Scholar