Passive resting state and history of antagonist muscle activity shape active extensions in an insect limb

Ache JM, Matheson T (2012)
Journal of Neurophysiology 107(10): 2756-2768.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Ache, Jan MarekUniBi; Matheson, T
Abstract / Bemerkung
Limb movements can be driven by muscle contractions, external forces, or intrinsic passive forces. For lightweight limbs like those of insects or small vertebrates, passive forces can be large enough to overcome the effects of gravity and may even generate limb movements in the absence of active muscle contractions. Understanding the sources and actions of such forces is therefore important in understanding motor control. We describe passive properties of the femur-tibia joint of the locust hind leg. The resting angle is determined primarily by passive properties of the relatively large extensor tibiae muscle and is influenced by the history of activation of the fast extensor tibiae motor neuron. The resting angle is therefore better described as a history-dependent resting state. We selectively stimulated different flexor tibiae motor neurons to generate a range of isometric contractions of the flexor tibiae muscle and then stimulated the fast extensor tibiae motor neuron to elicit active tibial extensions. Residual forces in the flexor muscle have only a small effect on subsequent active extensions, but the effect is larger for distal than for proximal flexor motor neurons and varies with the strength of flexor activation. We conclude that passive properties of a lightweight limb make substantial and complex contributions to the resting state of the limb that must be taken into account in the patterning of neuronal control signals driving its active movements. Low variability in the effects of the passive forces may permit the nervous system to accurately predict their contributions to behavior.
Erscheinungsjahr
2012
Zeitschriftentitel
Journal of Neurophysiology
Band
107
Ausgabe
10
Seite(n)
2756-2768
ISSN
0022-3077
eISSN
1522-1598
Page URI
https://pub.uni-bielefeld.de/record/2551427

Zitieren

Ache JM, Matheson T. Passive resting state and history of antagonist muscle activity shape active extensions in an insect limb. Journal of Neurophysiology. 2012;107(10):2756-2768.
Ache, J. M., & Matheson, T. (2012). Passive resting state and history of antagonist muscle activity shape active extensions in an insect limb. Journal of Neurophysiology, 107(10), 2756-2768. doi:10.1152/jn.01072.2011
Ache, Jan Marek, and Matheson, T. 2012. “Passive resting state and history of antagonist muscle activity shape active extensions in an insect limb”. Journal of Neurophysiology 107 (10): 2756-2768.
Ache, J. M., and Matheson, T. (2012). Passive resting state and history of antagonist muscle activity shape active extensions in an insect limb. Journal of Neurophysiology 107, 2756-2768.
Ache, J.M., & Matheson, T., 2012. Passive resting state and history of antagonist muscle activity shape active extensions in an insect limb. Journal of Neurophysiology, 107(10), p 2756-2768.
J.M. Ache and T. Matheson, “Passive resting state and history of antagonist muscle activity shape active extensions in an insect limb”, Journal of Neurophysiology, vol. 107, 2012, pp. 2756-2768.
Ache, J.M., Matheson, T.: Passive resting state and history of antagonist muscle activity shape active extensions in an insect limb. Journal of Neurophysiology. 107, 2756-2768 (2012).
Ache, Jan Marek, and Matheson, T. “Passive resting state and history of antagonist muscle activity shape active extensions in an insect limb”. Journal of Neurophysiology 107.10 (2012): 2756-2768.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Fast and Powerful: Biomechanics and Bite Forces of the Mandibles in the American Cockroach Periplaneta americana.
Weihmann T, Reinhardt L, Weißing K, Siebert T, Wipfler B., PLoS One 10(11), 2015
PMID: 26559671
Motor inhibition affects the speed but not accuracy of aimed limb movements in an insect.
Calas-List D, Clare AJ, Komissarova A, Nielsen TA, Matheson T., J Neurosci 34(22), 2014
PMID: 24872556
The Brady Bunch? New evidence for nominative determinism in patients' health: retrospective, population based cohort study.
Keaney JJ, Groarke JD, Galvin Z, McGorrian C, McCann HA, Sugrue D, Keelan E, Galvin J, Blake G, Mahon NG, O'Neill J., BMJ 347(), 2013
PMID: 24336304

63 References

Daten bereitgestellt von Europe PubMed Central.


Ache JM., 2010
The neural basis of the femur-tibia-control-system in the stick insect Carausius morosus
Bässler U, Storrer J., 1980
The energetics of the jump of the locust Schistocerca gregaria.
Bennet-Clark HC., J. Exp. Biol. 63(1), 1975
PMID: 1159370
Motor neurone responses during a postural reflex in solitarious and gregarious desert locusts.
Blackburn LM, Ott SR, Matheson T, Burrows M, Rogers SM., J. Insect Physiol. 56(8), 2010
PMID: 20416321
Mechanical properties of locust extensor tibiae muscles
Burns MD, Usherwood PN., 1978
The control of walking in Orthoptera. II. Motor neurone activity in normal free-walking animals
Burns MD, Usherwood PN., 1979

Burrows M., 1996
Motor patterns during kicking movements in the locust.
Burrows M., J. Comp. Physiol. A 176(3), 1995
PMID: 7707268
Jumping and kicking in bush crickets.
Burrows M, Morris O., J. Exp. Biol. 206(Pt 6), 2003
PMID: 12582146
Physiological characterisation of a simply innervated insect muscle
Clare AJ, Sutton G, Burrows M, Matheson T., 2009
The control system of the femur-tibia joint in the standing leg of a walking stick insect Carausius morosus
Cruse H, Schmitz J., 1983
Motor neurones of the flexor tibiae muscle in phasmids
Debrodt B, Bässler U., 1989
How animals move: an integrative view.
Dickinson MH, Farley CT, Full RJ, Koehl MA, Kram R, Lehman S., Science 288(5463), 2000
PMID: 10753108
Fiber analysis of the nerves of the second thoracic leg in Periplaneta americana
Dresden D, Nijenhuis ED., 1958
Neuroethology of sound production in gomphocerine grasshoppers (Orthoptera: Acrididae). II. Neuromuscular activity underlying stridulation
Elsner N., 1975
Reflex effects of the femoral chordotonal organ upon leg motor neurones of the locust
Field LH, Burrows M., 1982
Pattern generation for walking and searching movements of a stick insect leg. I. Coordination of motor activity.
Fischer H, Schmidt J, Haas R, Buschges A., J. Neurophysiol. 85(1), 2001
PMID: 11152734
The motor innervation of the leg musculature and motor output during thanatosis in the stick insect Carausius morosus Br
Godden DH., 1972
The extensor tibiae muscle of the stick insect: biomechanical properties of an insect walking leg muscle.
Guschlbauer C, Scharstein H, Buschges A., J. Exp. Biol. 210(Pt 6), 2007
PMID: 17337721
The locust jump
Heitler WJ., 1974
Neural control of unloaded leg posture and of leg swing in stick insect, cockroach, and mouse differs from that in larger animals.
Hooper SL, Guschlbauer C, Blumel M, Rosenbaum P, Gruhn M, Akay T, Buschges A., J. Neurosci. 29(13), 2009
PMID: 19339606
Exploration of neuronal mechanisms underlying behavior in insects
Hoyle G., 1964
The anatomy and innervation of locust skeletal muscle.
HOYLE G., Proc. R. Soc. Lond., B, Biol. Sci. 143(911), 1955
PMID: 14371609
Intrinsic rhythm and basic tonus in insect skeletal muscle.
Hoyle G., J. Exp. Biol. 73(), 1978
PMID: 650145
Intrinsic rhythmic contractions in insect skeletal muscle.
Hoyle G, O'Shea M., J. Exp. Zool. 189(3), 1974
PMID: 4413977
Locomotory activity in the extensor and flexor tibiae of the cockroach, Periplaneta americana
Krauthamer V, Fourtner CR., 1978
Effects of load inversion in cockroach walking.
Larsen GS, Frazier SF, Fish SE, Zill SN., J. Comp. Physiol. A 176(2), 1995
PMID: 7884685
Motor control of aimed limb movements in an insect.
Page KL, Zakotnik J, Durr V, Matheson T., J. Neurophysiol. 99(2), 2007
PMID: 18032564
Function of peripheral inhibitory axons in insects
Pearson KG., 1973
Locust phase polyphenism: an update
Pener MP, Simpson SJ., 2009
An arthropod muscle innervated by nine excitatory motor neurones
Philips CE., 1980
Identified muscle fibers in a crab. I. Characteristics of excitatory and inhibitory neuromuscular transmission
Rathmayer W, Erxleben C., 1983
Spatiotemporal receptive field properties of a looming-sensitive neuron in solitarious and gregarious phases of the desert locust.
Rogers SM, Harston GW, Kilburn-Toppin F, Matheson T, Burrows M, Gabbiani F, Krapp HG., J. Neurophysiol. 103(2), 2009
PMID: 19955292
A behavioural analysis of phase change in the desert locust
Simpson SJ, McCaffery AR, Hägele BF., 1999
Motoneurone im Meso- und Metathorakalganglion der Stabheuschrecke Carausius morosus
Storrer J, Bässler U, Mayer S., 1986
A comparative study of the anatomy and innervation of the metathoracic extensor tibia muscle in three orthopteran species
Theophilidis G., 1983
The innervation of the mesothoracic flexor tibiae muscle of the locust
Theophilidis G, Burns MD., 1983
PERIPHERAL INHIBITION IN SKELETAL MUSCLE OF INSECTS.
USHERWOOD PN, GRUNDFEST H., J. Neurophysiol. 28(), 1965
PMID: 14328449

Voskresenskaya AK., 1959
Activity patterns of inhibitory motoneurones and their impact on leg movement in tethered walking locusts
Wolf H., 1990
Co-contraction and passive forces facilitate load compensation of aimed limb movements.
Zakotnik J, Matheson T, Durr V., J. Neurosci. 26(19), 2006
PMID: 16687491
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22357791
PubMed | Europe PMC

Suchen in

Google Scholar