Texture dependence of motion sensing and free flight behavior in blowflies

Lindemann JP, Egelhaaf M (2013)
Frontiers in Behavioral Neuroscience 6: 92.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
Many flying insects exhibit an active flight and gaze strategy: purely translational flight segments alternate with quick turns called saccades. To generate such a saccadic flight pattern, the animals decide the timing, direction, and amplitude of the next saccade during the previous translatory intersaccadic interval. The information underlying these decisions is assumed to be extracted from the retinal image displacements (optic flow), which scale with the distance to objects during the intersaccadic flight phases. In an earlier study we proposed a saccade-generation mechanism based on the responses of large-field motion-sensitive neurons. In closed-loop simulations we achieved collision avoidance behavior in a limited set of environments but observed collisions in others. Here we show by open-loop simulations that the cause of this observation is the known texture-dependence of elementary motion detection in flies, reflected also in the responses of large-field neurons as used in our model. We verified by electrophysiological experiments that this result is not an artifact of the sensory model. Already subtle changes in the texture may lead to qualitative differences in the responses of both our model cells and their biological counterparts in the fly's brain. Nonetheless, free flight behavior of blowflies is only moderately affected by such texture changes. This divergent texture dependence of motion-sensitive neurons and behavioral performance suggests either mechanisms that compensate for the texture dependence of the visual motion pathway at the level of the circuits generating the saccadic turn decisions or the involvement of a hypothetical parallel pathway in saccadic control that provides the information for collision avoidance independent of the textural properties of the environment.
Stichworte
texture; vision; behavior; simulations; model; motion detection; free flight; insects
Erscheinungsjahr
2013
Zeitschriftentitel
Frontiers in Behavioral Neuroscience
Band
6
Seite(n)
92
ISSN
1662-5153
eISSN
1662-5153
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2550598

Zitieren

Lindemann JP, Egelhaaf M. Texture dependence of motion sensing and free flight behavior in blowflies. Frontiers in Behavioral Neuroscience. 2013;6:92.
Lindemann, J. P., & Egelhaaf, M. (2013). Texture dependence of motion sensing and free flight behavior in blowflies. Frontiers in Behavioral Neuroscience, 6, 92. doi:10.3389/fnbeh.2012.00092
Lindemann, Jens Peter, and Egelhaaf, Martin. 2013. “Texture dependence of motion sensing and free flight behavior in blowflies”. Frontiers in Behavioral Neuroscience 6: 92.
Lindemann, J. P., and Egelhaaf, M. (2013). Texture dependence of motion sensing and free flight behavior in blowflies. Frontiers in Behavioral Neuroscience 6, 92.
Lindemann, J.P., & Egelhaaf, M., 2013. Texture dependence of motion sensing and free flight behavior in blowflies. Frontiers in Behavioral Neuroscience, 6, p 92.
J.P. Lindemann and M. Egelhaaf, “Texture dependence of motion sensing and free flight behavior in blowflies”, Frontiers in Behavioral Neuroscience, vol. 6, 2013, pp. 92.
Lindemann, J.P., Egelhaaf, M.: Texture dependence of motion sensing and free flight behavior in blowflies. Frontiers in Behavioral Neuroscience. 6, 92 (2013).
Lindemann, Jens Peter, and Egelhaaf, Martin. “Texture dependence of motion sensing and free flight behavior in blowflies”. Frontiers in Behavioral Neuroscience 6 (2013): 92.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:09Z
MD5 Prüfsumme
574d1927cab8bb00633e3c011e606ed5


7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Biological Agency: Its Subjective Foundations and a Large-Scale Taxonomy.
Brizio A, Tirassa M., Front Psychol 7(), 2016
PMID: 26903891
A network of visual motion-sensitive neurons for computing object position in an arthropod.
Medan V, Berón De Astrada M, Scarano F, Tomsic D., J Neurosci 35(17), 2015
PMID: 25926445

44 References

Daten bereitgestellt von Europe PubMed Central.

Motion processing streams in Drosophila are behaviorally specialized.
Katsov AY, Clandinin TR., Neuron 59(2), 2008
PMID: 18667159
Stabilizing gaze in flying blowflies.
Schilstra C, van Hateren JH., Nature 395(6703), 1998
PMID: 9790186
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507
Accuracy of velocity estimation by Reichardt correlators.
Dror RO, O'Carroll DC, Laughlin SB., J Opt Soc Am A Opt Image Sci Vis 18(2), 2001
PMID: 11205969
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol. 3(6), 2005
PMID: 15884977
On the computations analyzing natural optic flow: quantitative model analysis of the blowfly motion vision pathway.
Lindemann JP, Kern R, van Hateren JH, Ritter H, Egelhaaf M., J. Neurosci. 25(27), 2005
PMID: 16000634
Visual edge orientation shapes free-flight behavior in Drosophila.
Frye MA, Dickinson MH., Fly (Austin) 1(3), 2007
PMID: 18820449
Gaze strategy in the free flying zebra finch (Taeniopygia guttata).
Eckmeier D, Geurten BR, Kress D, Mertes M, Kern R, Egelhaaf M, Bischof HJ., PLoS ONE 3(12), 2008
PMID: 19107185
The fine structure of honeybee head and body yaw movements in a homing task.
Boeddeker N, Dittmar L, Sturzl W, Egelhaaf M., Proc. Biol. Sci. 277(1689), 2010
PMID: 20147329
Robust models for optic flow coding in natural scenes inspired by insect biology.
Brinkworth RS, O'Carroll DC., PLoS Comput. Biol. 5(11), 2009
PMID: 19893631
Identifying prototypical components in behaviour using clustering algorithms.
Braun E, Geurten B, Egelhaaf M., PLoS ONE 5(2), 2010
PMID: 20179763
Fly motion vision.
Borst A, Haag J, Reiff DF., Annu. Rev. Neurosci. 33(), 2010
PMID: 20225934
A model of visual-olfactory integration for odour localisation in free-flying fruit flies.
Stewart FJ, Baker DA, Webb B., J. Exp. Biol. 213(11), 2010
PMID: 20472776
A syntax of hoverfly flight prototypes.
Geurten BR, Kern R, Braun E, Egelhaaf M., J. Exp. Biol. 213(Pt 14), 2010
PMID: 20581276
Binocular integration of visual information: a model study on naturalistic optic flow processing.
Hennig P, Kern R, Egelhaaf M., Front Neural Circuits 5(), 2011
PMID: 21519385
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Insect-inspired high-speed motion vision system for robot control.
Wu H, Zou K, Zhang T, Borst A, Kuhnlenz K., Biol Cybern 106(8-9), 2012
PMID: 22864467
Facts on optic flow.
Koenderink JJ, van Doorn AJ., Biol Cybern 56(4), 1987
PMID: 3607100
Modelling the power spectra of natural images: statistics and information.
van der Schaaf A, van Hateren JH., Vision Res. 36(17), 1996
PMID: 8917763
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res. 43(7), 2003
PMID: 12639604
A test bed for insect-inspired robotic control.
Reiser MB, Dickinson MH., Philos Trans A Math Phys Eng Sci 361(1811), 2003
PMID: 14599319
Contrast-independent biologically inspired motion detection.
Babies B, Lindemann JP, Egelhaaf M, Moller R., Sensors (Basel) 11(3), 2011
PMID: 22163800
Loom-sensitive neurons link computation to action in the Drosophila visual system.
de Vries SE, Clandinin TR., Curr. Biol. 22(5), 2012
PMID: 22305754
Blowfly flight characteristics are shaped by environmental features and controlled by optic flow information.
Kern R, Boeddeker N, Dittmar L, Egelhaaf M., J. Exp. Biol. 215(Pt 14), 2012
PMID: 22723490
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J. Neurophysiol. 96(3), 2006
PMID: 16687623
Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly.
Lindemann JP, Weiss H, Moller R, Egelhaaf M., Biol Cybern 98(3), 2008
PMID: 18180948
Motion vision is independent of color in Drosophila.
Yamaguchi S, Wolf R, Desplan C, Heisenberg M., Proc. Natl. Acad. Sci. U.S.A. 105(12), 2008
PMID: 18353989
Contrast sensitivity of insect motion detectors to natural images.
Straw AD, Rainsford T, O'Carroll DC., J Vis 8(3), 2008
PMID: 18484838
Transient and steady-state response properties of movement detectors.
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23335890
PubMed | Europe PMC

Suchen in

Google Scholar