Osmoprotection of Bacillus subtilis through Import and Proteolysis of Proline-Containing Peptides

Zaprasis A, Brill J, Thüring M, Wünsche G, Heun M, Barzantny H, Hoffmann T, Bremer E (2013)
Applied and environmental microbiology 79(2): 576-587.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Zaprasis, Adrienne; Brill, Jeanette; Thüring, Marietta; Wünsche, Guido; Heun, Magnus; Barzantny, HelenaUniBi; Hoffmann, Tamara; Bremer, Erhard
Abstract / Bemerkung
Bacillus subtilis can attain cellular protection against the detrimental effects of high osmolarity through osmotically induced de novo synthesis and uptake of the compatible solute l-proline. We have now found that B. subtilis can also exploit exogenously provided proline-containing peptides of various lengths and compositions as osmoprotectants. Osmoprotection by these types of peptides is generally dependent on their import via the peptide transport systems (Dpp, Opp, App, and DtpT) operating in B. subtilis and relies on their hydrolysis to liberate proline. The effectiveness with which proline-containing peptides confer osmoprotection varies considerably, and this can be correlated with the amount of the liberated and subsequently accumulated free proline by the osmotically stressed cell. Through gene disruption experiments, growth studies, and the quantification of the intracellular proline pool, we have identified the PapA (YqhT) and PapB (YkvY) peptidases as responsible for the hydrolysis of various types of Xaa-Pro dipeptides and Xaa-Pro-Xaa tripeptides. The PapA and PapB peptidases possess overlapping substrate specificities. In contrast, osmoprotection by peptides of various lengths and compositions with a proline residue positioned at their N terminus was not affected by defects in the PapA and PapB peptidases. Taken together, our data provide new insight into the physiology of the osmotic stress response of B. subtilis. They illustrate the flexibility of this ubiquitously distributed microorganism to effectively exploit environmental resources in its acclimatization to sustained high-osmolarity surroundings through the accumulation of compatible solutes.
Erscheinungsjahr
2013
Zeitschriftentitel
Applied and environmental microbiology
Band
79
Ausgabe
2
Seite(n)
576-587
ISSN
0099-2240
Page URI
https://pub.uni-bielefeld.de/record/2548779

Zitieren

Zaprasis A, Brill J, Thüring M, et al. Osmoprotection of Bacillus subtilis through Import and Proteolysis of Proline-Containing Peptides. Applied and environmental microbiology. 2013;79(2):576-587.
Zaprasis, A., Brill, J., Thüring, M., Wünsche, G., Heun, M., Barzantny, H., Hoffmann, T., et al. (2013). Osmoprotection of Bacillus subtilis through Import and Proteolysis of Proline-Containing Peptides. Applied and environmental microbiology, 79(2), 576-587. doi:10.1128/AEM.01934-12
Zaprasis, Adrienne, Brill, Jeanette, Thüring, Marietta, Wünsche, Guido, Heun, Magnus, Barzantny, Helena, Hoffmann, Tamara, and Bremer, Erhard. 2013. “Osmoprotection of Bacillus subtilis through Import and Proteolysis of Proline-Containing Peptides”. Applied and environmental microbiology 79 (2): 576-587.
Zaprasis, A., Brill, J., Thüring, M., Wünsche, G., Heun, M., Barzantny, H., Hoffmann, T., and Bremer, E. (2013). Osmoprotection of Bacillus subtilis through Import and Proteolysis of Proline-Containing Peptides. Applied and environmental microbiology 79, 576-587.
Zaprasis, A., et al., 2013. Osmoprotection of Bacillus subtilis through Import and Proteolysis of Proline-Containing Peptides. Applied and environmental microbiology, 79(2), p 576-587.
A. Zaprasis, et al., “Osmoprotection of Bacillus subtilis through Import and Proteolysis of Proline-Containing Peptides”, Applied and environmental microbiology, vol. 79, 2013, pp. 576-587.
Zaprasis, A., Brill, J., Thüring, M., Wünsche, G., Heun, M., Barzantny, H., Hoffmann, T., Bremer, E.: Osmoprotection of Bacillus subtilis through Import and Proteolysis of Proline-Containing Peptides. Applied and environmental microbiology. 79, 576-587 (2013).
Zaprasis, Adrienne, Brill, Jeanette, Thüring, Marietta, Wünsche, Guido, Heun, Magnus, Barzantny, Helena, Hoffmann, Tamara, and Bremer, Erhard. “Osmoprotection of Bacillus subtilis through Import and Proteolysis of Proline-Containing Peptides”. Applied and environmental microbiology 79.2 (2013): 576-587.

18 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Impact of nanoparticles on the Bacillus subtilis (3610) competence.
Eymard-Vernain E, Luche S, Rabilloud T, Lelong C., Sci Rep 8(1), 2018
PMID: 29445231
Microbial response to environmental stresses: from fundamental mechanisms to practical applications.
Guan N, Li J, Shin HD, Du G, Chen J, Liu L., Appl Microbiol Biotechnol 101(10), 2017
PMID: 28409384
Functional Characterization of Four Putative δ1-Pyrroline-5-Carboxylate Reductases from Bacillus subtilis.
Forlani G, Nocek B, Chakravarthy S, Joachimiak A., Front Microbiol 8(), 2017
PMID: 28824574
Crystal structure of a novel prolidase from Deinococcus radiodurans identifies new subfamily of bacterial prolidases.
Are VN, Jamdar SN, Ghosh B, Goyal VD, Kumar A, Neema S, Gadre R, Makde RD., Proteins 85(12), 2017
PMID: 28929533
Hyperconcentrated Sweet Whey, a New Culture Medium That Enhances Propionibacterium freudenreichii Stress Tolerance.
Huang S, Rabah H, Jardin J, Briard-Bion V, Parayre S, Maillard MB, Le Loir Y, Chen XD, Schuck P, Jeantet R, Jan G., Appl Environ Microbiol 82(15), 2016
PMID: 27235433
Unknown unknowns: essential genes in quest for function.
Danchin A, Fang G., Microb Biotechnol 9(5), 2016
PMID: 27435445
Identification of Differentially Expressed Genes during Bacillus subtilis Spore Outgrowth in High-Salinity Environments Using RNA Sequencing.
Nagler K, Krawczyk AO, De Jong A, Madela K, Hoffmann T, Laue M, Kuipers OP, Bremer E, Moeller R., Front Microbiol 7(), 2016
PMID: 27766092
Uptake of amino acids and their metabolic conversion into the compatible solute proline confers osmoprotection to Bacillus subtilis.
Zaprasis A, Bleisteiner M, Kerres A, Hoffmann T, Bremer E., Appl Environ Microbiol 81(1), 2015
PMID: 25344233
Transcriptional analysis of adaptation to high glucose concentrations in Zymomonas mobilis.
Zhang K, Shao H, Cao Q, He MX, Wu B, Feng H., Appl Microbiol Biotechnol 99(4), 2015
PMID: 25582559
Functional role of oppA encoding an oligopeptide-binding protein from Lactobacillus salivarius Ren in bile tolerance.
Wang G, Li D, Ma X, An H, Zhai Z, Ren F, Hao Y., J Ind Microbiol Biotechnol 42(8), 2015
PMID: 25998246
The γ-aminobutyrate permease GabP serves as the third proline transporter of Bacillus subtilis.
Zaprasis A, Hoffmann T, Stannek L, Gunka K, Commichau FM, Bremer E., J Bacteriol 196(3), 2014
PMID: 24142252
Dimethylglycine provides salt and temperature stress protection to Bacillus subtilis.
Bashir A, Hoffmann T, Smits SH, Bremer E., Appl Environ Microbiol 80(9), 2014
PMID: 24561588
Small cationic antimicrobial peptides delocalize peripheral membrane proteins.
Wenzel M, Chiriac AI, Otto A, Zweytick D, May C, Schumacher C, Gust R, Albada HB, Penkova M, Krämer U, Erdmann R, Metzler-Nolte N, Straus SK, Bremer E, Becher D, Brötz-Oesterhelt H, Sahl HG, Bandow JE., Proc Natl Acad Sci U S A 111(14), 2014
PMID: 24706874
Adaptation of Bacillus subtilis carbon core metabolism to simultaneous nutrient limitation and osmotic challenge: a multi-omics perspective.
Kohlstedt M, Sappa PK, Meyer H, Maaß S, Zaprasis A, Hoffmann T, Becker J, Steil L, Hecker M, van Dijl JM, Lalk M, Mäder U, Stülke J, Bremer E, Völker U, Wittmann C., Environ Microbiol 16(6), 2014
PMID: 24571712
Transcriptional profiling of Staphylococcus aureus during growth in 2 M NaCl leads to clarification of physiological roles for Kdp and Ktr K+ uptake systems.
Price-Whelan A, Poon CK, Benson MA, Eidem TT, Roux CM, Boyd JM, Dunman PM, Torres VJ, Krulwich TA., MBio 4(4), 2013
PMID: 23963175

82 References

Daten bereitgestellt von Europe PubMed Central.

Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes
Bremer E, Krämer R., 2000
Mechanosensitive channels in bacteria: signs of closure?
Booth IR, Edwards MD, Black S, Schumann U, Miller S., Nat. Rev. Microbiol. 5(6), 2007
PMID: 17505523
Osmosensing and osmoregulatory compatible solute accumulation by bacteria.
Wood JM, Bremer E, Csonka LN, Kraemer R, Poolman B, van der Heide T, Smith LT., Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 130(3), 2001
PMID: 11913457
Physiological and genetic responses of bacteria to osmotic stress.
Csonka LN., Microbiol. Rev. 53(1), 1989
PMID: 2651863
Proline to the rescue.
Fisher MT., Proc. Natl. Acad. Sci. U.S.A. 103(36), 2006
PMID: 16938858
Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant.
Ignatova Z, Gierasch LM., Proc. Natl. Acad. Sci. U.S.A. 103(36), 2006
PMID: 16899544
The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis.
Whatmore AM, Chudek JA, Reed RH., J. Gen. Microbiol. 136(12), 1990
PMID: 2127802
Cellular adjustment of and other bacilli to fluctuating salinities
Pittelkow M, Bremer E., 2011
Adaptation to changing osmolarity
Bremer E., 2002
Genome-wide transcriptional profiling analysis of adaptation of Bacillus subtilis to high salinity.
Steil L, Hoffmann T, Budde I, Volker U, Bremer E., J. Bacteriol. 185(21), 2003
PMID: 14563871
A comprehensive proteomics and transcriptomics analysis of Bacillus subtilis salt stress adaptation.
Hahne H, Mader U, Otto A, Bonn F, Steil L, Bremer E, Hecker M, Becher D., J. Bacteriol. 192(3), 2009
PMID: 19948795
KtrAB and KtrCD: two K+ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity.
Holtmann G, Bakker EP, Uozumi N, Bremer E., J. Bacteriol. 185(4), 2003
PMID: 12562800
T-box-mediated control of the anabolic proline biosynthetic genes of Bacillus subtilis.
Brill J, Hoffmann T, Putzer H, Bremer E., Microbiology (Reading, Engl.) 157(Pt 4), 2011
PMID: 21233158
Synthesis, release, and recapture of compatible solute proline by osmotically stressed Bacillus subtilis cells.
Hoffmann T, von Blohn C, Stanek A, Moses S, Barzantny H, Bremer E., Appl. Environ. Microbiol. 78(16), 2012
PMID: 22685134
Functional and genetic characterization of mcpC, which encodes a third methyl-accepting chemotaxis protein in Bacillus subtilis.
Muller J, Schiel S, Ordal GW, Saxild HH., Microbiology (Reading, Engl.) 143 ( Pt 10)(), 1997
PMID: 9353924
Proline utilization by Bacillus subtilis: uptake and catabolism.
Moses S, Sinner T, Zaprasis A, Stoveken N, Hoffmann T, Belitsky BR, Sonenshein AL, Bremer E., J. Bacteriol. 194(4), 2011
PMID: 22139509
Control of key metabolic intersections in Bacillus subtilis.
Sonenshein AL., Nat. Rev. Microbiol. 5(12), 2007
PMID: 17982469
Multiple genes for the last step of proline biosynthesis in Bacillus subtilis.
Belitsky BR, Brill J, Bremer E, Sonenshein AL., J. Bacteriol. 183(14), 2001
PMID: 11418582
General and regulatory proteolysis in
Turgay K., 2012
The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation.
Perego M, Higgins CF, Pearce SR, Gallagher MP, Hoch JA., Mol. Microbiol. 5(1), 1991
PMID: 1901616
Correlation between Bacillus subtilis scoC phenotype and gene expression determined using microarrays for transcriptome analysis.
Caldwell R, Sapolsky R, Weyler W, Maile RR, Causey SC, Ferrari E., J. Bacteriol. 183(24), 2001
PMID: 11717292
Pentapeptide regulation of aspartyl-phosphate phosphatases.
Perego M, Brannigan JA., Peptides 22(10), 2001
PMID: 11587783
An atypical Phr peptide regulates the developmental switch protein RapH.
Mirouze N, Parashar V, Baker MD, Dubnau DA, Neiditch MB., J. Bacteriol. 193(22), 2011
PMID: 21908671
Structural basis of response regulator dephosphorylation by Rap phosphatases.
Parashar V, Mirouze N, Dubnau DA, Neiditch MB., PLoS Biol. 9(2), 2011
PMID: 21346797
Identification of residues important for cleavage of the extracellular signaling peptide CSF of Bacillus subtilis from its precursor protein.
Lanigan-Gerdes S, Briceno G, Dooley AN, Faull KF, Lazazzera BA., J. Bacteriol. 190(20), 2008
PMID: 18689487
A Bacillus subtilis dipeptide transport system expressed early during sporulation.
Mathiopoulos C, Mueller JP, Slack FJ, Murphy CG, Patankar S, Bukusoglu G, Sonenshein AL., Mol. Microbiol. 5(8), 1991
PMID: 1766370
High-precision, whole-genome sequencing of laboratory strains facilitates genetic studies.
Srivatsan A, Han Y, Peng J, Tehranchi AK, Gibbs R, Wang JD, Chen R., PLoS Genet. 4(8), 2008
PMID: 18670626
From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later.
Barbe V, Cruveiller S, Kunst F, Lenoble P, Meurice G, Sekowska A, Vallenet D, Wang T, Moszer I, Medigue C, Danchin A., Microbiology (Reading, Engl.) 155(Pt 6), 2009
PMID: 19383706
Alternating access mechanism in the POT family of oligopeptide transporters.
Solcan N, Kwok J, Fowler PW, Cameron AD, Drew D, Iwata S, Newstead S., EMBO J. 31(16), 2012
PMID: 22659829
Identification and characterization of Di- and tripeptide transporter DtpT of Listeria monocytogenes EGD-e.
Wouters JA, Hain T, Darji A, Hufner E, Wemekamp-Kamphuis H, Chakraborty T, Abee T., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204487
A di- and tripeptide transport system can supply Listeria monocytogenes Scott A with amino acids essential for growth.
Verheul A, Hagting A, Amezaga MR, Booth IR, Rombouts FM, Abee T., Appl. Environ. Microbiol. 61(1), 1995
PMID: 7887604
Only one of four oligopeptide transport systems mediates nitrogen nutrition in Staphylococcus aureus.
Hiron A, Borezee-Durant E, Piard JC, Juillard V., J. Bacteriol. 189(14), 2007
PMID: 17496096
The role of peptide metabolism in the growth of Listeria monocytogenes ATCC 23074 at high osmolarity.
Amezaga MR, Davidson I, McLaggan D, Verheul A, Abee T, Booth IR., Microbiology (Reading, Engl.) 141 ( Pt 1)(), 1995
PMID: 7894718
Adaptation to high salt in Lactobacillus: role of peptides and proteolytic enzymes.
Piuri M, Sanchez-Rivas C, Ruzal SM., J. Appl. Microbiol. 95(2), 2003
PMID: 12859771
Rapid determination of free proline for water-stress studies
Bates SL, Waldren RP, Teare ID., 1973
Growth, maintenance and general techniques
Harwood CR, Archibald AR., 1990

Sambrook J, Fritsch EF, Maniatis TE., 1989
Genetic analysis
Cutting SM, Vander PB., 1990
PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors.
Kuwayama H, Obara S, Morio T, Katoh M, Urushihara H, Tanaka Y., Nucleic Acids Res. 30(2), 2002
PMID: 11788728
Antibiotic-resistance cassettes for Bacillus subtilis.
Guerout-Fleury AM, Shazand K, Frandsen N, Stragier P., Gene 167(1-2), 1995
PMID: 8566804
Cre/lox system and PCR-based genome engineering in Bacillus subtilis.
Yan X, Yu HJ, Hong Q, Li SP., Appl. Environ. Microbiol. 74(17), 2008
PMID: 18641148

Miller JH., 1972
SubtiWiki--a comprehensive community resource for the model organism Bacillus subtilis.
Mader U, Schmeisky AG, Florez LA, Stulke J., Nucleic Acids Res. 40(Database issue), 2011
PMID: 22096228
DbClustal: rapid and reliable global multiple alignments of protein sequences detected by database searches.
Thompson JD, Plewniak F, Thierry J, Poch O., Nucleic Acids Res. 28(15), 2000
PMID: 10908355
The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling.
Arnold K, Bordoli L, Kopp J, Schwede T., Bioinformatics 22(2), 2005
PMID: 16301204
MEROPS: the database of proteolytic enzymes, their substrates and inhibitors.
Rawlings ND, Barrett AJ, Bateman A., Nucleic Acids Res. 40(Database issue), 2011
PMID: 22086950
BRENDA, the enzyme information system in 2011.
Scheer M, Grote A, Chang A, Schomburg I, Munaretto C, Rother M, Sohngen C, Stelzer M, Thiele J, Schomburg D., Nucleic Acids Res. 39(Database issue), 2010
PMID: 21062828
Structure and mechanism of a proline-specific aminopeptidase from Escherichia coli.
Wilce MC, Bond CS, Dixon NE, Freeman HC, Guss JM, Lilley PE, Wilce JA., Proc. Natl. Acad. Sci. U.S.A. 95(7), 1998
PMID: 9520390
Structure of the prolidase from Pyrococcus furiosus.
Maher MJ, Ghosh M, Grunden AM, Menon AL, Adams MW, Freeman HC, Guss JM., Biochemistry 43(10), 2004
PMID: 15005612
Catalytic properties of the PepQ prolidase from Escherichia coli.
Park MS, Hill CM, Li Y, Hardy RK, Khanna H, Khang YH, Raushel FM., Arch. Biochem. Biophys. 429(2), 2004
PMID: 15313226
Peptide binding to the oligopeptide-binding proteins OppA and AppA
Picon A, van KHM., 2001
The structure of the oligopeptide-binding protein, AppA, from Bacillus subtilis in complex with a nonapeptide.
Levdikov VM, Blagova EV, Brannigan JA, Wright L, Vagin AA, Wilkinson AJ., J. Mol. Biol. 345(4), 2005
PMID: 15588833
Self-signaling by Phr peptides modulates development
Perego M., 1994
Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis.
Nicolas P, Mader U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, Bidnenko E, Marchadier E, Hoebeke M, Aymerich S, Becher D, Bisicchia P, Botella E, Delumeau O, Doherty G, Denham EL, Fogg MJ, Fromion V, Goelzer A, Hansen A, Hartig E, Harwood CR, Homuth G, Jarmer H, Jules M, Klipp E, Le Chat L, Lecointe F, Lewis P, Liebermeister W, March A, Mars RA, Nannapaneni P, Noone D, Pohl S, Rinn B, Rugheimer F, Sappa PK, Samson F, Schaffer M, Schwikowski B, Steil L, Stulke J, Wiegert T, Devine KM, Wilkinson AJ, van Dijl JM, Hecker M, Volker U, Bessieres P, Noirot P., Science 335(6072), 2012
PMID: 22383849
Thermodynamic limits to microbial life at high salt concentrations.
Oren A., Environ. Microbiol. 13(8), 2010
PMID: 21054738
Osmoadaptation in rhizobia: ectoine-induced salt tolerance.
Talibart R, Jebbar M, Gouesbet G, Himdi-Kabbab S, Wroblewski H, Blanco C, Bernard T., J. Bacteriol. 176(17), 1994
PMID: 8071195
Bacillus
Logan N, De P., 2009
Ecology and genomics of Bacillus subtilis.
Earl AM, Losick R, Kolter R., Trends Microbiol. 16(6), 2008
PMID: 18467096
From transcriptional landscapes to the identification of biomarkers for robustness.
Abee T, Wels M, de Been M, den Besten H., Microb. Cell Fact. 10 Suppl 1(), 2011
PMID: 21995521
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23144141
PubMed | Europe PMC

Suchen in

Google Scholar