GIBBS MEASURES OF CONTINUOUS SYSTEMS: AN ANALYTIC APPROACH

Kondratiev Y, Pasurek T, Röckner M (2012)
Reviews In Mathematical Physics 24(10).

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
We present a new method to prove existence and uniform a priori estimates for Gibbs measures associated with classical particle systems in a continuum. The method is based on the choice of appropriate Lyapunov functionals and on corresponding exponential bounds for the local Gibbs specification. Extensions to infinite range and multibody interactions are included.
Erscheinungsjahr
Zeitschriftentitel
Reviews In Mathematical Physics
Band
24
Ausgabe
10
ISSN
PUB-ID

Zitieren

Kondratiev Y, Pasurek T, Röckner M. GIBBS MEASURES OF CONTINUOUS SYSTEMS: AN ANALYTIC APPROACH. Reviews In Mathematical Physics. 2012;24(10).
Kondratiev, Y., Pasurek, T., & Röckner, M. (2012). GIBBS MEASURES OF CONTINUOUS SYSTEMS: AN ANALYTIC APPROACH. Reviews In Mathematical Physics, 24(10). doi:10.1142/S0129055X12500262
Kondratiev, Y., Pasurek, T., and Röckner, M. (2012). GIBBS MEASURES OF CONTINUOUS SYSTEMS: AN ANALYTIC APPROACH. Reviews In Mathematical Physics 24.
Kondratiev, Y., Pasurek, T., & Röckner, M., 2012. GIBBS MEASURES OF CONTINUOUS SYSTEMS: AN ANALYTIC APPROACH. Reviews In Mathematical Physics, 24(10).
Y. Kondratiev, T. Pasurek, and M. Röckner, “GIBBS MEASURES OF CONTINUOUS SYSTEMS: AN ANALYTIC APPROACH”, Reviews In Mathematical Physics, vol. 24, 2012.
Kondratiev, Y., Pasurek, T., Röckner, M.: GIBBS MEASURES OF CONTINUOUS SYSTEMS: AN ANALYTIC APPROACH. Reviews In Mathematical Physics. 24, (2012).
Kondratiev, Yuri, Pasurek, Tatiana, and Röckner, Michael. “GIBBS MEASURES OF CONTINUOUS SYSTEMS: AN ANALYTIC APPROACH”. Reviews In Mathematical Physics 24.10 (2012).