GIBBS MEASURES OF CONTINUOUS SYSTEMS: AN ANALYTIC APPROACH

Kondratiev Y, Pasurek T, Röckner M (2012)
Reviews In Mathematical Physics 24(10): 1250026.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
We present a new method to prove existence and uniform a priori estimates for Gibbs measures associated with classical particle systems in a continuum. The method is based on the choice of appropriate Lyapunov functionals and on corresponding exponential bounds for the local Gibbs specification. Extensions to infinite range and multibody interactions are included.
Stichworte
Dobrushin criteria; DLR equation; measures; Gibbs; Poisson measure; Configuration spaces; continuous systems; Ruelle superstability
Erscheinungsjahr
2012
Zeitschriftentitel
Reviews In Mathematical Physics
Band
24
Ausgabe
10
Art.-Nr.
1250026
ISSN
0129-055X
Page URI
https://pub.uni-bielefeld.de/record/2548494

Zitieren

Kondratiev Y, Pasurek T, Röckner M. GIBBS MEASURES OF CONTINUOUS SYSTEMS: AN ANALYTIC APPROACH. Reviews In Mathematical Physics. 2012;24(10): 1250026.
Kondratiev, Y., Pasurek, T., & Röckner, M. (2012). GIBBS MEASURES OF CONTINUOUS SYSTEMS: AN ANALYTIC APPROACH. Reviews In Mathematical Physics, 24(10), 1250026. doi:10.1142/S0129055X12500262
Kondratiev, Y., Pasurek, T., and Röckner, M. (2012). GIBBS MEASURES OF CONTINUOUS SYSTEMS: AN ANALYTIC APPROACH. Reviews In Mathematical Physics 24:1250026.
Kondratiev, Y., Pasurek, T., & Röckner, M., 2012. GIBBS MEASURES OF CONTINUOUS SYSTEMS: AN ANALYTIC APPROACH. Reviews In Mathematical Physics, 24(10): 1250026.
Y. Kondratiev, T. Pasurek, and M. Röckner, “GIBBS MEASURES OF CONTINUOUS SYSTEMS: AN ANALYTIC APPROACH”, Reviews In Mathematical Physics, vol. 24, 2012, : 1250026.
Kondratiev, Y., Pasurek, T., Röckner, M.: GIBBS MEASURES OF CONTINUOUS SYSTEMS: AN ANALYTIC APPROACH. Reviews In Mathematical Physics. 24, : 1250026 (2012).
Kondratiev, Yuri, Pasurek, Tatiana, and Röckner, Michael. “GIBBS MEASURES OF CONTINUOUS SYSTEMS: AN ANALYTIC APPROACH”. Reviews In Mathematical Physics 24.10 (2012): 1250026.