Antifreeze glycopeptide diastereomers

Nagel L, Budke C, Dreyer A, Koop T, Sewald N (2012)
Beilstein Journal of Organic Chemistry 8: 1657-1667.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Antifreeze glycopeptides (AFGPs) are a special class of biological antifreeze agents, which possess the property to inhibit ice growth in the body fluids of arctic and antarctic fish and, thus, enable life under these harsh conditions. AFGPs are composed of 4-55 tripeptide units -Ala-Ala-Thr- glycosylated at the threonine side chains. Despite the structural homology among all the fish species, divergence regarding the composition of the amino acids occurs in peptides from natural sources. Although AFGPs were discovered in the early 1960s, the adsorption mechanism of these macromolecules to the surface of the ice crystals has not yet been fully elucidated. Two AFGP diastereomers containing different amino acid configurations were synthesized to study the influence of amino acid stereochemistry on conformation and antifreeze activity. For this purpose, peptides containing monosaccharide-substituted allo-L- and D-threonine building blocks were assembled by solid-phase peptide synthesis (SPPS). The retro-inverso AFGP analogue contained all amino acids in D-configuration, while the allo-L-diastereomer was composed of L-amino acids, like native AFGPs, with replacement of L-threonine by its allo-L-diastereomer. Both glycopeptides were analyzed regarding their conformational properties, by circular dichroism (CD), and their ability to inhibit ice recrystallization in microphysical experiments.
circular dichroism; bioorganic chemistry; glycopeptides; recrystallization; ice; microwave chemistry
Beilstein Journal of Organic Chemistry
Page URI


Nagel L, Budke C, Dreyer A, Koop T, Sewald N. Antifreeze glycopeptide diastereomers. Beilstein Journal of Organic Chemistry. 2012;8:1657-1667.
Nagel, L., Budke, C., Dreyer, A., Koop, T., & Sewald, N. (2012). Antifreeze glycopeptide diastereomers. Beilstein Journal of Organic Chemistry, 8, 1657-1667. doi:10.3762/bjoc.8.190
Nagel, L., Budke, C., Dreyer, A., Koop, T., and Sewald, N. (2012). Antifreeze glycopeptide diastereomers. Beilstein Journal of Organic Chemistry 8, 1657-1667.
Nagel, L., et al., 2012. Antifreeze glycopeptide diastereomers. Beilstein Journal of Organic Chemistry, 8, p 1657-1667.
L. Nagel, et al., “Antifreeze glycopeptide diastereomers”, Beilstein Journal of Organic Chemistry, vol. 8, 2012, pp. 1657-1667.
Nagel, L., Budke, C., Dreyer, A., Koop, T., Sewald, N.: Antifreeze glycopeptide diastereomers. Beilstein Journal of Organic Chemistry. 8, 1657-1667 (2012).
Nagel, Lilly, Budke, Carsten, Dreyer, Axel, Koop, Thomas, and Sewald, Norbert. “Antifreeze glycopeptide diastereomers”. Beilstein Journal of Organic Chemistry 8 (2012): 1657-1667.

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Synthesis and conformational preferences of short analogues of antifreeze glycopeptides (AFGP).
Urbańczyk M, Jewgiński M, Krzciuk-Gula J, Góra J, Latajka R, Sewald N., Beilstein J Org Chem 15(), 2019
PMID: 31435440
Antifreeze glycopeptides: from structure and activity studies to current approaches in chemical synthesis.
Urbańczyk M, Góra J, Latajka R, Sewald N., Amino Acids 49(2), 2017
PMID: 27913993
Anti-Biofilm Activity of a Self-Aggregating Peptide against Streptococcus mutans.
Ansari JM, Abraham NM, Massaro J, Murphy K, Smith-Carpenter J, Fikrig E., Front Microbiol 8(), 2017
PMID: 28392782
Perturbation of long-range water dynamics as the mechanism for the antifreeze activity of antifreeze glycoprotein.
Mallajosyula SS, Vanommeslaeghe K, MacKerell AD., J Phys Chem B 118(40), 2014
PMID: 25137353
Synthesis of peptides and glycopeptides with polyproline II helical topology as potential antifreeze molecules.
Corcilius L, Santhakumar G, Stone RS, Capicciotti CJ, Joseph S, Matthews JM, Ben RN, Payne RJ., Bioorg Med Chem 21(12), 2013
PMID: 23523384
Antifreeze peptides and glycopeptides, and their derivatives: potential uses in biotechnology.
Bang JK, Lee JH, Murugan RN, Lee SG, Do H, Koh HY, Shim HE, Kim HC, Kim HJ., Mar Drugs 11(6), 2013
PMID: 23752356

34 References

Daten bereitgestellt von Europe PubMed Central.

Solute effects on ice recrystallization: an assessment technique.
Knight CA, Hallett J, DeVries AL., Cryobiology 25(1), 1988
PMID: 3349811
Comparison of the solution conformation and dynamics of antifreeze glycoproteins from Antarctic fish.
Lane AN, Hays LM, Tsvetkova N, Feeney RE, Crowe LM, Crowe JH., Biophys. J. 78(6), 2000
PMID: 10827996
Nonequilibrium antifreeze peptides and the recrystallization of ice.
Knight CA, Wen D, Laursen RA., Cryobiology 32(1), 1995
PMID: 7697996
Antifreeze proteins.
Davies PL, Sykes BD., Curr. Opin. Struct. Biol. 7(6), 1997
PMID: 9434903
Conformational and dynamic properties of a 14 residue antifreeze glycopeptide from Antarctic cod.
Lane AN, Hays LM, Feeney RE, Crowe LM, Crowe JH., Protein Sci. 7(7), 1998
PMID: 9684888
Solvent dependence of PII conformation in model alanine peptides.
Liu Z, Chen K, Ng A, Shi Z, Woody RW, Kallenbach NR., J. Am. Chem. Soc. 126(46), 2004
PMID: 15548011
New insights into alpha-GalNAc-Ser motif: influence of hydrogen bonding versus solvent interactions on the preferred conformation.
Corzana F, Busto JH, Jimenez-Oses G, Asensio JL, Jimenez-Barbero J, Peregrina JM, Avenoza A., J. Am. Chem. Soc. 128(45), 2006
PMID: 17090050
The importance of hydration for inhibiting ice recrystallization with C-linked antifreeze glycoproteins.
Czechura P, Tam RY, Dimitrijevic E, Murphy AV, Ben RN., J. Am. Chem. Soc. 130(10), 2008
PMID: 18275198
Solution conformation of C-linked antifreeze glycoprotein analogues and modulation of ice recrystallization.
Tam RY, Rowley CN, Petrov I, Zhang T, Afagh NA, Woo TK, Ben RN., J. Am. Chem. Soc. 131(43), 2009
PMID: 19824639
Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies.
Heggemann C, Budke C, Schomburg B, Majer Z, Wissbrock M, Koop T, Sewald N., Amino Acids 38(1), 2009
PMID: 19165574
Contiguous O-galactosylation of 4(R)-hydroxy-l-proline residues forms very stable polyproline II helices.
Owens NW, Stetefeld J, Lattova E, Schweizer F., J. Am. Chem. Soc. 132(14), 2010
PMID: 20334378
'Antifreeze' glycoproteins from polar fish.
Harding MM, Anderberg PI, Haymet AD., Eur. J. Biochem. 270(7), 2003
PMID: 12653993
Antifreeze glycoproteins: structure, conformation, and biological applications.
Bouvet V, Ben RN., Cell Biochem. Biophys. 39(2), 2003
PMID: 14515019
The polyproline II conformation in short alanine peptides is noncooperative.
Chen K, Liu Z, Kallenbach NR., Proc. Natl. Acad. Sci. U.S.A. 101(43), 2004
PMID: 15489268
Computed circular dichroism spectra for the evaluation of protein conformation.
Greenfield N, Fasman GD., Biochemistry 8(10), 1969
PMID: 5346390
Studies on the structure and activity of low molecular weight glycoproteins from an antarctic fish.
Lin Y, Duman JG, DeVries AL., Biochem. Biophys. Res. Commun. 46(1), 1972
PMID: 5006918
A biological antifreeze.
Feeney RE., Am. Sci. 62(6), 1974
PMID: 4440942
Antifreeze glycoproteins from the blood of an antarctic fish. The structure of the proline-containing glycopeptides.
Morris HR, Thompson MR, Osuga DT, Ahmed AI, Chan SM, Vandenheede JR, Feeney RE., J. Biol. Chem. 253(14), 1978
PMID: 670183
Fish antifreeze protein and the freezing and recrystallization of ice.
Knight CA, DeVries AL, Oolman LD., Nature 308(5956), 1984
PMID: 6700733
Conformation of the antifreeze glycoprotein of polar fish.
Bush CA, Ralapati S, Matson GM, Yamasaki RB, Osuga DT, Yeh Y, Feeney RE., Arch. Biochem. Biophys. 232(2), 1984
PMID: 6087734
Direct evidence for antifreeze glycoprotein adsorption onto an ice surface.
Brown RA, Yeh Y, Burcham TS, Feeney RE., Biopolymers 24(7), 1985
PMID: 4027344
Purification and primary sequences of the major arginine-containing antifreeze glycopeptides from the fish Eleginus gracilis.
Burcham TS, Osuga DT, Rao BN, Bush CA, Feeney RE., J. Biol. Chem. 261(14), 1986
PMID: 3700395
Antifreeze glycoprotein activity correlates with long-range protein-water dynamics.
Ebbinghaus S, Meister K, Born B, DeVries AL, Gruebele M, Havenith M., J. Am. Chem. Soc. 132(35), 2010
PMID: 20712311
Design and synthesis of antifreeze glycoproteins and mimics.
Garner J, Harding MM., Chembiochem 11(18), 2010
PMID: 21108270
One-pot azidochlorination of glycals.
Plattner C, Hofener M, Sewald N., Org. Lett. 13(4), 2011
PMID: 21244046
Synthesis of C-linked triazole-containing AFGP analogues and their ability to inhibit ice recrystallization.
Capicciotti CJ, Trant JF, Leclere M, Ben RN., Bioconjug. Chem. 22(4), 2011
PMID: 21456533
Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers.
Nagel L, Plattner C, Budke C, Majer Z, DeVries AL, Berkemeier T, Koop T, Sewald N., Amino Acids 41(3), 2011
PMID: 21603949
Influence of sequential modifications and carbohydrate variations in synthetic AFGP analogues on conformation and antifreeze activity.
Nagel L, Budke C, Erdmann RS, Dreyer A, Wennemers H, Koop T, Sewald N., Chemistry 18(40), 2012
PMID: 22930587
Conformational studies of a synthetic peptide corresponding to the repeat motif of C hordein.
Tatham AS, Drake AF, Shewry PR., Biochem. J. 259(2), 1989
PMID: 2719660


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 23209499
PubMed | Europe PMC

Suchen in

Google Scholar