Functional relationship between cognitive representations of movement directions and visuomotor adaptation performance

Lex H, Weigelt M, Knoblauch A, Schack T (2012)
Experimental Brain Research 223(4): 457-467.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
The aim of our study was to explore whether or not different types of learners in a sensorimotor task possess characteristically different cognitive representations. Participants' sensorimotor adaptation performance was measured with a pointing paradigm which used a distortion of the visual feedback in terms of a left-right reversal. The structure of cognitive representations was assessed using a newly established experimental method, the Cognitive Measurement of Represented Directions. A post hoc analysis revealed inter-individual differences in participants' adaptation performance, and three different skill levels (skilled, average, and poor adapters) have been defined. These differences in performance were correlated with the structure of participants' cognitive representations of movement directions. Analysis of these cognitive representations revealed performance advantages for participants possessing a global cognitive representation of movement directions (aligned to cardinal movement axes), rather than a local representation (aligned to each neighboring direction). Our findings are evidence that cognitive representation structures play a functional role in adaptation performance.
Erscheinungsjahr
Zeitschriftentitel
Experimental Brain Research
Band
223
Ausgabe
4
Seite(n)
457-467
ISSN
eISSN
PUB-ID

Zitieren

Lex H, Weigelt M, Knoblauch A, Schack T. Functional relationship between cognitive representations of movement directions and visuomotor adaptation performance. Experimental Brain Research. 2012;223(4):457-467.
Lex, H., Weigelt, M., Knoblauch, A., & Schack, T. (2012). Functional relationship between cognitive representations of movement directions and visuomotor adaptation performance. Experimental Brain Research, 223(4), 457-467. doi:10.1007/s00221-012-3273-7
Lex, H., Weigelt, M., Knoblauch, A., and Schack, T. (2012). Functional relationship between cognitive representations of movement directions and visuomotor adaptation performance. Experimental Brain Research 223, 457-467.
Lex, H., et al., 2012. Functional relationship between cognitive representations of movement directions and visuomotor adaptation performance. Experimental Brain Research, 223(4), p 457-467.
H. Lex, et al., “Functional relationship between cognitive representations of movement directions and visuomotor adaptation performance”, Experimental Brain Research, vol. 223, 2012, pp. 457-467.
Lex, H., Weigelt, M., Knoblauch, A., Schack, T.: Functional relationship between cognitive representations of movement directions and visuomotor adaptation performance. Experimental Brain Research. 223, 457-467 (2012).
Lex, Heiko, Weigelt, Matthias, Knoblauch, Andreas, and Schack, Thomas. “Functional relationship between cognitive representations of movement directions and visuomotor adaptation performance”. Experimental Brain Research 223.4 (2012): 457-467.

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Robotic exoskeleton assessment of transient ischemic attack.
Simmatis L, Krett J, Scott SH, Jin AY., PLoS One 12(12), 2017
PMID: 29272289
Cognitive representations and cognitive processing of team-specific tactics in soccer.
Lex H, Essig K, Knoblauch A, Schack T., PLoS One 10(2), 2015
PMID: 25714486
Reliance on visual attention during visuomotor adaptation: an SSVEP study.
Reuter EM, Bednark J, Cunnington R., Exp Brain Res 233(7), 2015
PMID: 25893908
Individual predictors of sensorimotor adaptability.
Seidler RD, Mulavara AP, Bloomberg JJ, Peters BT., Front Syst Neurosci 9(), 2015
PMID: 26217197
The functional role of cognitive frameworks on visuomotor adaptation performance.
Lex H, Weigelt M, Knoblauch A, Schack T., J Mot Behav 46(6), 2014
PMID: 25205332
Representing the egocentric auditory space: relationships of surrounding region concepts.
Campos MC, Hermann T, Schack T, Bläsing B., Acta Psychol (Amst) 142(3), 2013
PMID: 23481544

42 References

Daten bereitgestellt von Europe PubMed Central.

Transfer of sensorimotor adaptation between different movement categories.
Abeele S, Bock O., Exp Brain Res 148(1), 2002
PMID: 12478403

R, Monatszeitschrift Psychiatr Neurol 25(), 1909
The over-representation of contralateral space in parietal cortex: a positive image of directional motor components of neglect?
Battaglia-Mayer A, Mascaro M, Brunamonti E, Caminiti R., Cereb. Cortex 15(5), 2004
PMID: 15319306

B, 2010

B, Psychol Sport Exerc 10(3), 2009
The effects of sequence difficulty and practice on proportional and nonproportional transfer.
Braden HW, Panzer S, Shea CH., Q J Exp Psychol (Hove) 61(9), 2008
PMID: 17918037
Understanding the parietal lobe syndrome from a neurophysiological and evolutionary perspective.
Caminiti R, Chafee MV, Battaglia-Mayer A, Averbeck BB, Crowe DA, Georgopoulos AP., Eur. J. Neurosci. 31(12), 2010
PMID: 20550568
Neural aspects of cognitive motor control.
Georgopoulos AP., Curr. Opin. Neurobiol. 10(2), 2000
PMID: 10753794

AP, Exp Brain Res Suppl 7(), 1983
Neuronal population coding of movement direction.
Georgopoulos AP, Schwartz AB, Kettner RE., Science 233(4771), 1986
PMID: 3749885
On the distribution of attention in a visuo-manual adaptation task.
Grigorova V, Petkova G, Bock O., Exp Brain Res 175(4), 2006
PMID: 17051379
The role of proprioception and attention in a visuomotor adaptation task.
Ingram HA, van Donkelaar P, Cole J, Vercher JL, Gauthier GM, Miall RC., Exp Brain Res 132(1), 2000
PMID: 10836641

B, 1996
Learning of visuomotor transformations for vectorial planning of reaching trajectories.
Krakauer JW, Pine ZM, Ghilardi MF, Ghez C., J. Neurosci. 20(23), 2000
PMID: 11102502
Representing spatial information for limb movement: role of area 5 in the monkey.
Lacquaniti F, Guigon E, Bianchi L, Ferraina S, Caminiti R., Cereb. Cortex 5(5), 1995
PMID: 8547787

J, KI-Künstliche Intelligenz 24(), 2010

CB, Annu Rev Psychol 32(), 1981
Adaptation to rotated visual feedback: a re-examination of motor interference.
Miall RC, Jenkinson N, Kulkarni K., Exp Brain Res 154(2), 2003
PMID: 14608451
The contribution of proprioceptive feedback to sensorimotor adaptation.
Pipereit K, Bock O, Vercher JL., Exp Brain Res 174(1), 2006
PMID: 16528496
Adaptive spatial alignment and strategic perceptual-motor control.
Redding GM, Wallace B., J Exp Psychol Hum Percept Perform 22(2), 1996
PMID: 8934851

T, Int J Sport Exerc Psychol 2(4), 2004

T, 2011

T, 2007
Representation of motor skills in human long-term memory.
Schack T, Mechsner F., Neurosci. Lett. 391(3), 2005
PMID: 16266782
Motor cortical activity in a memorized delay task.
Smyrnis N, Taira M, Ashe J, Georgopoulos AP., Exp Brain Res 92(1), 1992
PMID: 1486948

T, Psychol Res (), 2011
When feeling is more important than seeing in sensorimotor adaptation.
van Beers RJ, Wolpert DM, Haggard P., Curr. Biol. 12(10), 2002
PMID: 12015120

M, Psychol Sport Exerc 12(3), 2011
An internal model for sensorimotor integration.
Wolpert DM, Ghahramani Z, Jordan MI., Science 269(5232), 1995
PMID: 7569931
Evidence against a single coordinate system representation in the motor cortex.
Wu W, Hatsopoulos N., Exp Brain Res 175(2), 2006
PMID: 16775704
Coordinate system representations of movement direction in the premotor cortex.
Wu W, Hatsopoulos NG., Exp Brain Res 176(4), 2006
PMID: 17180398

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23007723
PubMed | Europe PMC

Suchen in

Google Scholar