Cellulose degradation and assimilation by the unicellular phototrophic eukaryote Chlamydomonas reinhardtii

Blifernez-Klassen O, Klassen V, Doebbe A, Kersting K, Grimm P, Wobbe L, Kruse O (2012)
Nature communications 3(1): 1214.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Plants convert sunlight to biomass, which is primarily composed of lignocellulose, the most abundant natural biopolymer and a potential feedstock for fuel and chemical production. Cellulose assimilation has so far only been described for heterotrophic organisms that rely on photosynthetically active primary producers of organic compounds. Among phototrophs, the unicellular green microalga Chlamydomonas reinhardtii is widely known as one of the best established model organisms. It occupies many habitats, including aquatic and soil ecosystems. This ubiquity underscores the versatile metabolic properties of this microorganism. Here we present yet another paradigm of adaptation for C. reinhardtii, highlighting its photoheterotrophic ability to utilize cellulose for growth in the absence of other carbon sources. When grown under CO(2)-limiting conditions in the light, secretion of endo-β-1,4-glucanases by the cell causes digestion of exogenous cellulose, followed by cellobiose uptake and assimilation. Phototrophic microbes like C. reinhardtii may thus serve as biocatalysts for cellulosic biofuel production.
Erscheinungsjahr
2012
Zeitschriftentitel
Nature communications
Band
3
Ausgabe
1
Art.-Nr.
1214
ISSN
2041-1723
eISSN
2041-1723
Page URI
https://pub.uni-bielefeld.de/record/2541470

Zitieren

Blifernez-Klassen O, Klassen V, Doebbe A, et al. Cellulose degradation and assimilation by the unicellular phototrophic eukaryote Chlamydomonas reinhardtii. Nature communications. 2012;3(1): 1214.
Blifernez-Klassen, O., Klassen, V., Doebbe, A., Kersting, K., Grimm, P., Wobbe, L., & Kruse, O. (2012). Cellulose degradation and assimilation by the unicellular phototrophic eukaryote Chlamydomonas reinhardtii. Nature communications, 3(1), 1214. doi:10.1038/ncomms2210
Blifernez-Klassen, Olga, Klassen, Viktor, Doebbe, Anja, Kersting, Klaudia, Grimm, Philipp, Wobbe, Lutz, and Kruse, Olaf. 2012. “Cellulose degradation and assimilation by the unicellular phototrophic eukaryote Chlamydomonas reinhardtii”. Nature communications 3 (1): 1214.
Blifernez-Klassen, O., Klassen, V., Doebbe, A., Kersting, K., Grimm, P., Wobbe, L., and Kruse, O. (2012). Cellulose degradation and assimilation by the unicellular phototrophic eukaryote Chlamydomonas reinhardtii. Nature communications 3:1214.
Blifernez-Klassen, O., et al., 2012. Cellulose degradation and assimilation by the unicellular phototrophic eukaryote Chlamydomonas reinhardtii. Nature communications, 3(1): 1214.
O. Blifernez-Klassen, et al., “Cellulose degradation and assimilation by the unicellular phototrophic eukaryote Chlamydomonas reinhardtii”, Nature communications, vol. 3, 2012, : 1214.
Blifernez-Klassen, O., Klassen, V., Doebbe, A., Kersting, K., Grimm, P., Wobbe, L., Kruse, O.: Cellulose degradation and assimilation by the unicellular phototrophic eukaryote Chlamydomonas reinhardtii. Nature communications. 3, : 1214 (2012).
Blifernez-Klassen, Olga, Klassen, Viktor, Doebbe, Anja, Kersting, Klaudia, Grimm, Philipp, Wobbe, Lutz, and Kruse, Olaf. “Cellulose degradation and assimilation by the unicellular phototrophic eukaryote Chlamydomonas reinhardtii”. Nature communications 3.1 (2012): 1214.

14 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Secretion of Acetylxylan Esterase From Chlamydomonas reinhardtii Enables Utilization of Lignocellulosic Biomass as a Carbon Source.
Ramos-Martinez EM, Fimognari L, Rasmussen MK, Sakuragi Y., Front Bioeng Biotechnol 7(), 2019
PMID: 30873405
A Platform for High-Throughput Assessments of Environmental Multistressors.
Nguyen B, Graham PJ, Rochman CM, Sinton D., Adv Sci (Weinh) 5(4), 2018
PMID: 29721416
Novel Insights from Comparative In Silico Analysis of Green Microalgal Cellulases.
Guerriero G, Sergeant K, Legay S, Hausman JF, Cauchie HM, Ahmad I, Siddiqui KS., Int J Mol Sci 19(6), 2018
PMID: 29914107
Biomass from microalgae: the potential of domestication towards sustainable biofactories.
Benedetti M, Vecchi V, Barera S, Dall'Osto L., Microb Cell Fact 17(1), 2018
PMID: 30414618
Evolutionary consequences of multidriver environmental change in an aquatic primary producer.
Brennan GL, Colegrave N, Collins S., Proc Natl Acad Sci U S A 114(37), 2017
PMID: 28847969
De novo transcriptome of the cosmopolitan dinoflagellate Amphidinium carterae to identify enzymes with biotechnological potential.
Lauritano C, De Luca D, Ferrarini A, Avanzato C, Minio A, Esposito F, Ianora A., Sci Rep 7(1), 2017
PMID: 28916825
High-yield production of extracellular type-I cellulose by the cyanobacterium Synechococcus sp. PCC 7002.
Zhao C, Li Z, Li T, Zhang Y, Bryant DA, Zhao J., Cell Discov 1(), 2015
PMID: 27462405
Lignocellulose degradation mechanisms across the Tree of Life.
Cragg SM, Beckham GT, Bruce NC, Bugg TD, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, McQueen-Mason SJ, Schnorr K, Walton PH, Watts JE, Zimmer M., Curr Opin Chem Biol 29(), 2015
PMID: 26583519
Bioluminescence as a light source for photosynthesis.
Yuan H, Liu L, Lv F, Wang S., Chem Commun (Camb) 49(91), 2013
PMID: 24108441

59 References

Daten bereitgestellt von Europe PubMed Central.

Carbon in the atmosphere and terrestrial biosphere in the 21st century.
Malhi Y., Philos Trans A Math Phys Eng Sci 360(1801), 2002
PMID: 12626274
Microbial cellulose utilization: fundamentals and biotechnology.
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS., Microbiol. Mol. Biol. Rev. 66(3), 2002
PMID: 12209002
Structures and mechanisms of glycosyl hydrolases.
Davies G, Henrissat B., Structure 3(9), 1995
PMID: 8535779

AUTHOR UNKNOWN, 0
Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans.
Watson BJ, Zhang H, Longmire AG, Moon YH, Hutcheson SW., J. Bacteriol. 191(18), 2009
PMID: 19617364
CHLAMYDOMONAS AS A MODEL ORGANISM.
Harris EH., Annu. Rev. Plant Physiol. Plant Mol. Biol. 52(), 2001
PMID: 11337403
Cysteine modification of a specific repressor protein controls the translational status of nucleus-encoded LHCII mRNAs in Chlamydomonas.
Wobbe L, Blifernez O, Schwarz C, Mussgnug JH, Nickelsen J, Kruse O., Proc. Natl. Acad. Sci. U.S.A. 106(32), 2009
PMID: 19666611
Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii.
Beckmann J, Lehr F, Finazzi G, Hankamer B, Posten C, Wobbe L, Kruse O., J. Biotechnol. 142(1), 2009
PMID: 19480949
An economic and technical evaluation of microalgal biofuels.
Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B., Nat. Biotechnol. 28(2), 2010
PMID: 20139944
The Chlamydomonas genome reveals the evolution of key animal and plant functions.
Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR., Science 318(5848), 2007
PMID: 17932292
Microalgae as substrates for fermentative biogas production in a combined biorefinery concept.
Mussgnug JH, Klassen V, Schluter A, Kruse O., J. Biotechnol. 150(1), 2010
PMID: 20691224
Improved photobiological H2 production in engineered green algal cells.
Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B., J. Biol. Chem. 280(40), 2005
PMID: 16100118
Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii.
Tolleter D, Ghysels B, Alric J, Petroutsos D, Tolstygina I, Krawietz D, Happe T, Auroy P, Adriano JM, Beyly A, Cuine S, Plet J, Reiter IM, Genty B, Cournac L, Hippler M, Peltier G., Plant Cell 23(7), 2011
PMID: 21764992
Multiple facets of anoxic metabolism and hydrogen production in the unicellular green alga Chlamydomonas reinhardtii.
Grossman AR, Catalanotti C, Yang W, Dubini A, Magneschi L, Subramanian V, Posewitz MC, Seibert M., New Phytol. 190(2), 2011
PMID: 21563367
Nutritional studies with Chlamydomonas reinhardi.
SAGER R, GRANICK S., Ann. N. Y. Acad. Sci. 56(5), 1953
PMID: 13139273
Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H(2) production.
Doebbe A, Rupprecht J, Beckmann J, Mussgnug JH, Hallmann A, Hankamer B, Kruse O., J. Biotechnol. 131(1), 2007
PMID: 17624461

AUTHOR UNKNOWN, 0
Electron microscope and optical diffraction studies on isolated cell walls from Chlamydomonas.
Horne RW, Davies DR, Norton K, Gurney-Smith M., Nature 232(5311), 1971
PMID: 4937215
Hydroxyproline heterooligosaccharides in Chlamydomonas.
Miller DH, Lamport DT, Miller M., Science 176(4037), 1972
PMID: 5033634
Enzymatic degradation of the cell wall of Chlorella.
Braun E, Aach HG., Planta 126(2), 1975
PMID: 24430161
The contribution of endogenous cellulase to the cellulose digestion in the gut of earthworm (Pheretima hilgendorfi: Megascolecidae)
Nozaki Mana, Miura Chiemi, Tozawa Yuzuru, Miura Takeshi., Soil Biol. Biochem. 41(4), 2009
PMID: IND44184917
Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca.
Sakon J, Irwin D, Wilson DB, Karplus PA., Nat. Struct. Biol. 4(10), 1997
PMID: 9334746
A cellulase gene of termite origin.
Watanabe H, Noda H, Tokuda G, Lo N., Nature 394(6691), 1998
PMID: 9690469
Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis.
Irwin D, Shin DH, Zhang S, Barr BK, Sakon J, Karplus PA, Wilson DB., J. Bacteriol. 180(7), 1998
PMID: 9537366

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
The interplay of proton, electron, and metabolite supply for photosynthetic H2 production in Chlamydomonas reinhardtii.
Doebbe A, Keck M, La Russa M, Mussgnug JH, Hankamer B, Tekce E, Niehaus K, Kruse O., J. Biol. Chem. 285(39), 2010
PMID: 20581114
Characterization of photosystem II mutants of Chlamydomonas reinhardii lacking the psbA gene.
Bennoun P, Spierer-Herz M, Erickson J, Girard-Bascou J, Pierre Y, Delosme M, Rochaix JD., Plant Mol. Biol. 6(3), 1986
PMID: 24307274

Day, Physiol. Plant 78(), 1990
Controlling fungal contamination in Chlamydomonas reinhardtii cultures.
Mahan KM, Odom OW, Herrin DL., BioTechniques 39(4), 2005
PMID: 16235554
Fractionation of cellulases from the ruminal fungus Neocallimastix frontalis EB188.
Li XL, Calza RE., Appl. Environ. Microbiol. 57(11), 1991
PMID: 1664199
Regulation of biosynthesis of individual cellulases in Thermomonospora fusca.
Spiridonov NA, Wilson DB., J. Bacteriol. 180(14), 1998
PMID: 9657993
Characterization of the cellulolytic activity of a Bacillus isolate.
Robson LM, Chambliss GH., Appl. Environ. Microbiol. 47(5), 1984
PMID: 6742822
Cellodextrin transport in yeast for improved biofuel production.
Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JH., Science 330(6000), 2010
PMID: 20829451
Cellodextrin and laminaribiose ABC transporters in Clostridium thermocellum.
Nataf Y, Yaron S, Stahl F, Lamed R, Bayer EA, Scheper TH, Sonenshein AL, Shoham Y., J. Bacteriol. 191(1), 2008
PMID: 18952792
Transcriptional regulation of plant cell wall degradation by filamentous fungi.
Aro N, Pakula T, Penttila M., FEMS Microbiol. Rev. 29(4), 2004
PMID: 16102600
Ancient origin of glycosyl hydrolase family 9 cellulase genes.
Davison A, Blaxter M., Mol. Biol. Evol. 22(5), 2005
PMID: 15703240
Structural basis for the exocellulase activity of the cellobiohydrolase CbhA from Clostridium thermocellum.
Schubot FD, Kataeva IA, Chang J, Shah AK, Ljungdahl LG, Rose JP, Wang BC., Biochemistry 43(5), 2004
PMID: 14756552
CelI, a noncellulosomal family 9 enzyme from Clostridium thermocellum, is a processive endoglucanase that degrades crystalline cellulose.
Gilad R, Rabinovich L, Yaron S, Bayer EA, Lamed R, Gilbert HJ, Shoham Y., J. Bacteriol. 185(2), 2003
PMID: 12511483
High level secretion of cellobiohydrolases by Saccharomyces cerevisiae.
Ilmen M, den Haan R, Brevnova E, McBride J, Wiswall E, Froehlich A, Koivula A, Voutilainen SP, Siika-Aho M, la Grange DC, Thorngren N, Ahlgren S, Mellon M, Deleault K, Rajgarhia V, van Zyl WH, Penttila M., Biotechnol Biofuels 4(), 2011
PMID: 21910902
Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli.
Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Lee TS, Tullman-Ercek D, Voigt CA, Simmons BA, Keasling JD., Proc. Natl. Acad. Sci. U.S.A. 108(50), 2011
PMID: 22123987
Protein measurement with the Folin phenol reagent.
LOWRY OH, ROSEBROUGH NJ, FARR AL, RANDALL RJ., J. Biol. Chem. 193(1), 1951
PMID: 14907713
Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels.
Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, Mortensen P, Shevchenko A, Boucherie H, Mann M., Proc. Natl. Acad. Sci. U.S.A. 93(25), 1996
PMID: 8962070
Activity staining of cellulases in polyacrylamide gels containing mixed linkage beta-glucans.
Schwarz WH, Bronnenmeier K, Grabnitz F, Staudenbauer WL., Anal. Biochem. 164(1), 1987
PMID: 2445222
An optimized microplate assay system for quantitative evaluation of plant cell wall-degrading enzyme activity of fungal culture extracts.
King BC, Donnelly MK, Bergstrom GC, Walker LP, Gibson DM., Biotechnol. Bioeng. 102(4), 2009
PMID: 18973283

Miller, Anal. Chem. 31(), 1959

Ghose, Pure Appl. Chem. 59(), 1987
Material in PUB:
Teil dieser Dissertation
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23169055
PubMed | Europe PMC

Suchen in

Google Scholar