Hole probabilities and overcrowding estimates for products of complex Gaussian matrices
Akemann G, Strahov E (2013)
Journal of Statistical Physics 151(6): 987-1003.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Akemann, GernotUniBi;
Strahov, Eugene
Einrichtung
Abstract / Bemerkung
We consider eigenvalues of a product of n non-Hermitian, independent randommatrices. Each matrix in this product is of size N\times N with independentstandard complex Gaussian variables. The eigenvalues of such a product form adeterminantal point process on the complex plane (Akemann and Burda J. Phys A:Math. Theor. 45 (2012) 465201), which can be understood as a generalization ofthe finite Ginibre ensemble. As N\rightarrow\infty, a generalized infiniteGinibre ensemble arises. We show that the set of absolute values of the pointsof this determinantal process has the same distribution as{R_1^{(n)},R_2^{(n)},...}, where R_k^{(n)} are independent, and (R_k^{(n)})^2is distributed as the product of n independent Gamma variables Gamma(k,1). Thisenables us to find the asymptotics for the hole probabilities, i.e. for theprobabilities of the events that there are no points of the process in a discof radius r with its center at 0, as r\rightarrow\infty. In addition, we solvethe relevant overcrowding problem: we derive an asymptotic formula for theprobability that there are more than m points of the process in a fixed disk ofradius r with its center at 0, as m\rightarrow\infty.
Erscheinungsjahr
2013
Zeitschriftentitel
Journal of Statistical Physics
Band
151
Ausgabe
6
Seite(n)
987-1003
ISSN
0022-4715
eISSN
1572-9613
Page URI
https://pub.uni-bielefeld.de/record/2538479
Zitieren
Akemann G, Strahov E. Hole probabilities and overcrowding estimates for products of complex Gaussian matrices. Journal of Statistical Physics. 2013;151(6):987-1003.
Akemann, G., & Strahov, E. (2013). Hole probabilities and overcrowding estimates for products of complex Gaussian matrices. Journal of Statistical Physics, 151(6), 987-1003. doi:10.1007/s10955-013-0750-8
Akemann, Gernot, and Strahov, Eugene. 2013. “Hole probabilities and overcrowding estimates for products of complex Gaussian matrices”. Journal of Statistical Physics 151 (6): 987-1003.
Akemann, G., and Strahov, E. (2013). Hole probabilities and overcrowding estimates for products of complex Gaussian matrices. Journal of Statistical Physics 151, 987-1003.
Akemann, G., & Strahov, E., 2013. Hole probabilities and overcrowding estimates for products of complex Gaussian matrices. Journal of Statistical Physics, 151(6), p 987-1003.
G. Akemann and E. Strahov, “Hole probabilities and overcrowding estimates for products of complex Gaussian matrices”, Journal of Statistical Physics, vol. 151, 2013, pp. 987-1003.
Akemann, G., Strahov, E.: Hole probabilities and overcrowding estimates for products of complex Gaussian matrices. Journal of Statistical Physics. 151, 987-1003 (2013).
Akemann, Gernot, and Strahov, Eugene. “Hole probabilities and overcrowding estimates for products of complex Gaussian matrices”. Journal of Statistical Physics 151.6 (2013): 987-1003.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
arXiv: 1211.1576
Suchen in