Genome-wide analysis of light-dependent transcript accumulation patterns during early stages of Arabidopsis seedling deetiolation

Peschke F, Kretsch T (2011)
Plant physiology 155(3): 1353-1366.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Peschke, FlorianUniBi; Kretsch, Thomas
Abstract / Bemerkung
Light is among the most important exogenous factors that regulate plant development. To sense light quality, intensity, direction, and duration, plants have evolved multiple photoreceptors that enable the detection of photons from the ultraviolet B (UV-B) to the far-red spectrum. To study the effect of different light qualities on early gene expression, dark-grown Arabidopsis (Arabidopsis thaliana) seedlings were either irradiated with continuous far-red, red, or blue light or received pulses of red, UV-A, or UV-A/B light. The expression profiles of seedlings harvested at 45 min and 4 h were determined on a full genome level and compared with the profiles of dark controls. Data were used to identify light-regulated genes and to group these genes according to their light responses. While most of the genes were regulated by more than one light quality, a considerable number of UV-B-specific gene expression responses were obtained. An extraordinarily high similarity in gene expression patterns was obtained for samples that perceived continuous irradiation with either far-red or blue light for 4 h. Mutant analyses hint that this coincidence is caused by a convergence of the signaling cascades that regulate gene expression downstream of cryptochrome blue light photoreceptors and phytochrome A. Whereas many early light-regulated genes exhibited uniform responses to all applied light treatments, highly divergent expression patterns developed at 4 h. These data clearly indicate that light signaling during early deetiolation undergoes a switch from a rapid, but unspecific, response mode to regulatory systems that measure the spectral composition and duration of incident light.
Stichworte
Time Factors; Seedling/radiation effects; Seedling/growth & development; Seedling/genetics; Messenger/genetics; RNA; Up-Regulation/radiation effects; Messenger/metabolism; RNA; Light; Plant/genetics; Genome; Genetic Markers; Genes; Plant/genetics; Plant/radiation effects; Gene Expression Regulation; Developmental/radiation effects; Gene Expression Regulation; Cryptochromes/metabolism; Arabidopsis/radiation effects; Arabidopsis/genetics; Arabidopsis/growth & development; Phytochrome A/metabolism
Erscheinungsjahr
2011
Zeitschriftentitel
Plant physiology
Band
155
Ausgabe
3
Seite(n)
1353-1366
ISSN
0032-0889
eISSN
1532-2548
Page URI
https://pub.uni-bielefeld.de/record/2537807

Zitieren

Peschke F, Kretsch T. Genome-wide analysis of light-dependent transcript accumulation patterns during early stages of Arabidopsis seedling deetiolation. Plant physiology. 2011;155(3):1353-1366.
Peschke, F., & Kretsch, T. (2011). Genome-wide analysis of light-dependent transcript accumulation patterns during early stages of Arabidopsis seedling deetiolation. Plant physiology, 155(3), 1353-1366. doi:10.1104/pp.110.166801
Peschke, Florian, and Kretsch, Thomas. 2011. “Genome-wide analysis of light-dependent transcript accumulation patterns during early stages of Arabidopsis seedling deetiolation”. Plant physiology 155 (3): 1353-1366.
Peschke, F., and Kretsch, T. (2011). Genome-wide analysis of light-dependent transcript accumulation patterns during early stages of Arabidopsis seedling deetiolation. Plant physiology 155, 1353-1366.
Peschke, F., & Kretsch, T., 2011. Genome-wide analysis of light-dependent transcript accumulation patterns during early stages of Arabidopsis seedling deetiolation. Plant physiology, 155(3), p 1353-1366.
F. Peschke and T. Kretsch, “Genome-wide analysis of light-dependent transcript accumulation patterns during early stages of Arabidopsis seedling deetiolation”, Plant physiology, vol. 155, 2011, pp. 1353-1366.
Peschke, F., Kretsch, T.: Genome-wide analysis of light-dependent transcript accumulation patterns during early stages of Arabidopsis seedling deetiolation. Plant physiology. 155, 1353-1366 (2011).
Peschke, Florian, and Kretsch, Thomas. “Genome-wide analysis of light-dependent transcript accumulation patterns during early stages of Arabidopsis seedling deetiolation”. Plant physiology 155.3 (2011): 1353-1366.

26 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Multiple links between shade avoidance and auxin networks.
Iglesias MJ, Sellaro R, Zurbriggen MD, Casal JJ., J Exp Bot 69(2), 2018
PMID: 29036463
Long-Day Photoperiod Enhances Jasmonic Acid-Related Plant Defense.
Cagnola JI, Cerdán PD, Pacín M, Andrade A, Rodriguez V, Zurbriggen MD, Legris M, Buchovsky S, Carrillo N, Chory J, Blázquez MA, Alabadi D, Casal JJ., Plant Physiol 178(1), 2018
PMID: 30068539
DET1-mediated degradation of a SAGA-like deubiquitination module controls H2Bub homeostasis.
Nassrallah A, Rougée M, Bourbousse C, Drevensek S, Fonseca S, Iniesto E, Ait-Mohamed O, Deton-Cabanillas AF, Zabulon G, Ahmed I, Stroebel D, Masson V, Lombard B, Eeckhout D, Gevaert K, Loew D, Genovesio A, Breyton C, De Jaeger G, Bowler C, Rubio V, Barneche F., Elife 7(), 2018
PMID: 30192741
Molecular mechanisms and ecological function of far-red light signalling.
Sheerin DJ, Hiltbrunner A., Plant Cell Environ 40(11), 2017
PMID: 28102581
Characterization of photomorphogenic responses and signaling cascades controlled by phytochrome-A expressed in different tissues.
Kirchenbauer D, Viczián A, Ádám É, Hegedűs Z, Klose C, Leppert M, Hiltbrunner A, Kircher S, Schäfer E, Nagy F., New Phytol 211(2), 2016
PMID: 27027866
SPA proteins: SPAnning the gap between visible light and gene expression.
Menon C, Sheerin DJ, Hiltbrunner A., Planta 244(2), 2016
PMID: 27100111
Integration of light and metabolic signals for stem cell activation at the shoot apical meristem.
Pfeiffer A, Janocha D, Dong Y, Medzihradszky A, Schöne S, Daum G, Suzaki T, Forner J, Langenecker T, Rempel E, Schmid M, Wirtz M, Hell R, Lohmann JU., Elife 5(), 2016
PMID: 27400267
Light signaling controls nuclear architecture reorganization during seedling establishment.
Bourbousse C, Mestiri I, Zabulon G, Bourge M, Formiggini F, Koini MA, Brown SC, Fransz P, Bowler C, Barneche F., Proc Natl Acad Sci U S A 112(21), 2015
PMID: 25964332
A proteome map of a quadruple photoreceptor mutant sustains its severe photosynthetic deficient phenotype.
Fox AR, Barberini ML, Ploschuk EL, Muschietti JP, Mazzella MA., J Plant Physiol 185(), 2015
PMID: 26264966
UV-B-Induced CPD Photolyase Gene Expression is Regulated by UVR8-Dependent and -Independent Pathways in Arabidopsis.
Li N, Teranishi M, Yamaguchi H, Matsushita T, Watahiki MK, Tsuge T, Li SS, Hidema J., Plant Cell Physiol 56(10), 2015
PMID: 26272552
Distinct role of core promoter architecture in regulation of light-mediated responses in plant genes.
Srivastava R, Rai KM, Srivastava M, Kumar V, Pandey B, Singh SP, Bag SK, Singh BD, Tuli R, Sawant SV., Mol Plant 7(4), 2014
PMID: 24177688
The impact of chromatin dynamics on plant light responses and circadian clock function.
Barneche F, Malapeira J, Mas P., J Exp Bot 65(11), 2014
PMID: 24520020
Proteome analysis of peroxisomes from etiolated Arabidopsis seedlings identifies a peroxisomal protease involved in β-oxidation and development.
Quan S, Yang P, Cassin-Ross G, Kaur N, Switzenberg R, Aung K, Li J, Hu J., Plant Physiol 163(4), 2013
PMID: 24130194
A subcellular localization compendium of hydrogen peroxide-induced proteins.
Inzé A, Vanderauwera S, Hoeberichts FA, Vandorpe M, Van Gaever T, Van Breusegem F., Plant Cell Environ 35(2), 2012
PMID: 21443605
Photosynthetic control of electron transport and the regulation of gene expression.
Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J., J Exp Bot 63(4), 2012
PMID: 22371324
Exploring the molecular basis of responses to light in marine diatoms.
Depauw FA, Rogato A, Ribera d'Alcalá M, Falciatore A., J Exp Bot 63(4), 2012
PMID: 22328904
Nuclear phytochrome A signaling promotes phototropism in Arabidopsis.
Kami C, Hersch M, Trevisan M, Genoud T, Hiltbrunner A, Bergmann S, Fankhauser C., Plant Cell 24(2), 2012
PMID: 22374392
The mediator complex subunit PFT1 interferes with COP1 and HY5 in the regulation of Arabidopsis light signaling.
Klose C, Büche C, Fernandez AP, Schäfer E, Zwick E, Kretsch T., Plant Physiol 160(1), 2012
PMID: 22760208
Histone H2B monoubiquitination facilitates the rapid modulation of gene expression during Arabidopsis photomorphogenesis.
Bourbousse C, Ahmed I, Roudier F, Zabulon G, Blondet E, Balzergue S, Colot V, Bowler C, Barneche F., PLoS Genet 8(7), 2012
PMID: 22829781
Analysis of differential expression of Mediator subunit genes in Arabidopsis.
Pasrija R, Thakur JK., Plant Signal Behav 7(12), 2012
PMID: 23072992
AtIPD: a curated database of Arabidopsis isoprenoid pathway models and genes for isoprenoid network analysis.
Vranová E, Hirsch-Hoffmann M, Gruissem W., Plant Physiol 156(4), 2011
PMID: 21617028
The role of phytochrome in stress tolerance.
Carvalho RF, Campos ML, Azevedo RA., J Integr Plant Biol 53(12), 2011
PMID: 22040287
Spatial-specific regulation of root development by phytochromes in Arabidopsis thaliana.
Warnasooriya SN, Montgomery BL., Plant Signal Behav 6(12), 2011
PMID: 22112446

32 References

Daten bereitgestellt von Europe PubMed Central.

Phytochrome photosensory signalling networks.
Quail PH., Nat. Rev. Mol. Cell Biol. 3(2), 2002
PMID: 11836510
Light, phytochrome signalling and photomorphogenesis in Arabidopsis.
Casal JJ, Luccioni LG, Oliverio KA, Boccalandro HE., Photochem. Photobiol. Sci. 2(6), 2003
PMID: 12859146
From seed to seed: the role of photoreceptors in Arabidopsis development.
Sullivan JA, Deng XW., Dev. Biol. 260(2), 2003
PMID: 12921732
Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis.
Ulm R, Baumann A, Oravecz A, Mate Z, Adam E, Oakeley EJ, Schafer E, Nagy F., Proc. Natl. Acad. Sci. U.S.A. 101(5), 2004
PMID: 14739338
Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light.
Whitelam GC, Johnson E, Peng J, Carol P, Anderson ML, Cowl JS, Harberd NP., Plant Cell 5(7), 1993
PMID: 8364355
Promoter elements of the mustard CHS1 gene are sufficient for light regulation in transgenic plants.
Kaiser T, Emmler K, Kretsch T, Weisshaar B, Schafer E, Batschauer A., Plant Mol. Biol. 28(2), 1995
PMID: 7599308
The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro.
Ahmad M, Jarillo JA, Smirnova O, Cashmore AR., Mol. Cell 1(7), 1998
PMID: 9651577
Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis.
Favory JJ, Stec A, Gruber H, Rizzini L, Oravecz A, Funk M, Albert A, Cloix C, Jenkins GI, Oakeley EJ, Seidlitz HK, Nagy F, Ulm R., EMBO J. 28(5), 2009
PMID: 19165148
Signal transduction in responses to UV-B radiation.
Jenkins GI., Annu Rev Plant Biol 60(), 2009
PMID: 19400728
Synergism of red and blue light in the control of Arabidopsis gene expression and development.
Sellaro R, Hoecker U, Yanovsky M, Chory J, Casal JJ., Curr. Biol. 19(14), 2009
PMID: 19559617
Phytochrome functions in Arabidopsis development.
Franklin KA, Quail PH., J. Exp. Bot. 61(1), 2010
PMID: 19815685
Multiple transcription-factor genes are early targets of phytochrome A signaling.
Tepperman JM, Zhu T, Chang HS, Wang X, Quail PH., Proc. Natl. Acad. Sci. U.S.A. 98(16), 2001
PMID: 11481498
Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways.
Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H, Deng XW., Plant Cell 13(12), 2001
PMID: 11752374
The blue light receptor cryptochrome 1 can act independently of phytochrome A and B in Arabidopsis thaliana.
Poppe C, Sweere U, Drumm-Herrel H, Schafer E., Plant J. 16(4), 1998
PMID: 9881166
Light signal transduction in higher plants.
Chen M, Chory J, Fankhauser C., Annu. Rev. Genet. 38(), 2004
PMID: 15568973
The cryptochromes.
Lin C, Todo T., Genome Biol. 6(5), 2005
PMID: 15892880
The signal transducing photoreceptors of plants.
Franklin KA, Larner VS, Whitelam GC., Int. J. Dev. Biol. 49(5-6), 2005
PMID: 16096972
CONSTITUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis.
Oravecz A, Baumann A, Mate Z, Brzezinska A, Molinier J, Oakeley EJ, Adam E, Schafer E, Nagy F, Ulm R., Plant Cell 18(8), 2006
PMID: 16829591
Light-regulated transcriptional networks in higher plants.
Jiao Y, Lau OS, Deng XW., Nat. Rev. Genet. 8(3), 2007
PMID: 17304247
Phototropin blue-light receptors.
Christie JM., Annu Rev Plant Biol 58(), 2007
PMID: 17067285
Cryptochrome signaling in plants.
Li QH, Yang HQ., Photochem. Photobiol. 83(1), 2007
PMID: 17002522
Higher plants use LOV to perceive blue light.
Demarsy E, Fankhauser C., Curr. Opin. Plant Biol. 12(1), 2008
PMID: 18930433
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 21220763
PubMed | Europe PMC

Suchen in

Google Scholar