Influence of Sequential Modifications and Carbohydrate Variations in Synthetic AFGP Analogues on Conformation and Antifreeze Activity

Nagel L, Budke C, Erdmann RS, Dreyer A, Wennemers H, Koop T, Sewald N (2012)
Chemistry - A European Journal 18(40): 12783-12793.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Certain Arctic and Antarctic ectotherm species have developed strategies for survival under low temperature conditions that, among others, consist of antifreeze glycopeptides (AFGP). AFGP form a class of biological antifreeze agents that exhibit the ability to inhibit ice growth in vitro and in vivo and, hence, enable life at temperatures below the freezing point. AFGP usually consist of a varying number of (Ala-Ala-Thr)(n) units (n=4-55) with the disaccharide beta-D-galactosyl-(1 -> 3)-alpha-N-acetyl-d-galactosamine glycosidically attached to every threonine side chain hydroxyl group. AFGP have been shown to adopt polyproline II helical conformation. Although this pattern is highly conserved among different species, microheterogeneity concerning the amino acid composition usually occurs; for example, alanine is occasionally replaced by proline in smaller AFGP. The influence of minor and major sequence mutations on conformation and antifreeze activity of AFGP analogues was investigated by replacement of alanine by proline and glycosylated threonine by glycosylated hydroxyproline. The target compounds were prepared by using microwave-enhanced solid phase peptide synthesis. Furthermore, artificial analogues were obtained by copper-catalyzed azide-alkyne cycloaddition (CuAAC): propargyl glycosides were treated with polyproline helix II-forming peptides comprising (Pro-Azp-Pro)(n) units (n = 2-4) that contained 4-azidoproline (Azp). The conformations of all analogues were examined by circular dichroism (CD). In addition, microphysical analysis was performed to provide information on their inhibitory effect on ice recrystallization.
Stichworte
recrystallization; microwave chemistry; ice; glycopeptides; circular dichroism; bioorganic chemistry
Erscheinungsjahr
2012
Zeitschriftentitel
Chemistry - A European Journal
Band
18
Ausgabe
40
Seite(n)
12783-12793
ISSN
0947-6539
Page URI
https://pub.uni-bielefeld.de/record/2536081

Zitieren

Nagel L, Budke C, Erdmann RS, et al. Influence of Sequential Modifications and Carbohydrate Variations in Synthetic AFGP Analogues on Conformation and Antifreeze Activity. Chemistry - A European Journal. 2012;18(40):12783-12793.
Nagel, L., Budke, C., Erdmann, R. S., Dreyer, A., Wennemers, H., Koop, T., & Sewald, N. (2012). Influence of Sequential Modifications and Carbohydrate Variations in Synthetic AFGP Analogues on Conformation and Antifreeze Activity. Chemistry - A European Journal, 18(40), 12783-12793.
Nagel, Lilly, Budke, Carsten, Erdmann, Roman S., Dreyer, Axel, Wennemers, Helma, Koop, Thomas, and Sewald, Norbert. 2012. “Influence of Sequential Modifications and Carbohydrate Variations in Synthetic AFGP Analogues on Conformation and Antifreeze Activity”. Chemistry - A European Journal 18 (40): 12783-12793.
Nagel, L., Budke, C., Erdmann, R. S., Dreyer, A., Wennemers, H., Koop, T., and Sewald, N. (2012). Influence of Sequential Modifications and Carbohydrate Variations in Synthetic AFGP Analogues on Conformation and Antifreeze Activity. Chemistry - A European Journal 18, 12783-12793.
Nagel, L., et al., 2012. Influence of Sequential Modifications and Carbohydrate Variations in Synthetic AFGP Analogues on Conformation and Antifreeze Activity. Chemistry - A European Journal, 18(40), p 12783-12793.
L. Nagel, et al., “Influence of Sequential Modifications and Carbohydrate Variations in Synthetic AFGP Analogues on Conformation and Antifreeze Activity”, Chemistry - A European Journal, vol. 18, 2012, pp. 12783-12793.
Nagel, L., Budke, C., Erdmann, R.S., Dreyer, A., Wennemers, H., Koop, T., Sewald, N.: Influence of Sequential Modifications and Carbohydrate Variations in Synthetic AFGP Analogues on Conformation and Antifreeze Activity. Chemistry - A European Journal. 18, 12783-12793 (2012).
Nagel, Lilly, Budke, Carsten, Erdmann, Roman S., Dreyer, Axel, Wennemers, Helma, Koop, Thomas, and Sewald, Norbert. “Influence of Sequential Modifications and Carbohydrate Variations in Synthetic AFGP Analogues on Conformation and Antifreeze Activity”. Chemistry - A European Journal 18.40 (2012): 12783-12793.

10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Synthesis and conformational preferences of short analogues of antifreeze glycopeptides (AFGP).
Urbańczyk M, Jewgiński M, Krzciuk-Gula J, Góra J, Latajka R, Sewald N., Beilstein J Org Chem 15(), 2019
PMID: 31435440
Antifreeze glycopeptides: from structure and activity studies to current approaches in chemical synthesis.
Urbańczyk M, Góra J, Latajka R, Sewald N., Amino Acids 49(2), 2017
PMID: 27913993
Total Synthesis of O-GalNAcylated Antifreeze Glycoprotein using the Switchable Reactivity of Peptidyl-N-pivaloylguanidine.
Orii R, Sakamoto N, Fukami D, Tsuda S, Izumi M, Kajihara Y, Okamoto R., Chemistry 23(39), 2017
PMID: 28516497
Heterovalent Glycodendrimers as Epitope Carriers for Antitumor Synthetic Vaccines.
Pifferi C, Thomas B, Goyard D, Berthet N, Renaudet O., Chemistry 23(64), 2017
PMID: 28845889
Tailored chondroitin sulfate glycomimetics via a tunable multivalent scaffold for potentiating NGF/TrkA-induced neurogenesis.
Liu P, Chen L, Toh JKC, Ang YL, Jee JE, Lim J, Lee SS, Lee SG., Chem Sci 6(1), 2015
PMID: 28694940
Divergent and convergent synthesis of GalNAc-conjugated dendrimers using dual orthogonal ligations.
Thomas B, Pifferi C, Daskhan GC, Fiore M, Berthet N, Renaudet O., Org Biomol Chem 13(47), 2015
PMID: 26464062
Perturbation of long-range water dynamics as the mechanism for the antifreeze activity of antifreeze glycoprotein.
Mallajosyula SS, Vanommeslaeghe K, MacKerell AD., J Phys Chem B 118(40), 2014
PMID: 25137353
Antifreeze peptides and glycopeptides, and their derivatives: potential uses in biotechnology.
Bang JK, Lee JH, Murugan RN, Lee SG, Do H, Koh HY, Shim HE, Kim HC, Kim HJ., Mar Drugs 11(6), 2013
PMID: 23752356
Antifreeze glycopeptide diastereomers.
Nagel L, Budke C, Dreyer A, Koop T, Sewald N., Beilstein J Org Chem 8(), 2012
PMID: 23209499

104 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0
Antifreeze proteins.
Davies PL, Sykes BD., Curr. Opin. Struct. Biol. 7(6), 1997
PMID: 9434903
'Antifreeze' glycoproteins from polar fish.
Harding MM, Anderberg PI, Haymet AD., Eur. J. Biochem. 270(7), 2003
PMID: 12653993
Thermal hysteresis proteins.
Barrett J., Int. J. Biochem. Cell Biol. 33(2), 2001
PMID: 11240367

AUTHOR UNKNOWN, 0
Structure, function and evolution of antifreeze proteins.
Ewart KV, Lin Q, Hew CL., Cell. Mol. Life Sci. 55(2), 1999
PMID: 10188586
Antifreeze Proteins: Structures and Mechanisms of Function.
Yeh Y, Feeney RE., Chem. Rev. 96(2), 1996
PMID: 11848766
Solute effects on ice recrystallization: an assessment technique.
Knight CA, Hallett J, DeVries AL., Cryobiology 25(1), 1988
PMID: 3349811
Inhibition of bacterial ice nucleators by fish antifreeze glycoproteins.
Parody-Morreale A, Murphy KP, Di Cera E, Fall R, DeVries AL, Gill SJ., Nature 333(6175), 1988
PMID: 3386720
Inhibition of growth of nonbasal planes in ice by fish antifreezes.
Raymond JA, Wilson P, DeVries AL., Proc. Natl. Acad. Sci. U.S.A. 86(3), 1989
PMID: 2915983

AUTHOR UNKNOWN, 0
Fish antifreeze protein and the freezing and recrystallization of ice.
Knight CA, DeVries AL, Oolman LD., Nature 308(5956), 1984
PMID: 6700733
Antifreeze glycoproteins: structure, conformation, and biological applications.
Bouvet V, Ben RN., Cell Biochem. Biophys. 39(2), 2003
PMID: 14515019

Peltier, Chem. Sci. 1(), 2010

AUTHOR UNKNOWN, 0
Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes.
Knight CA, Cheng CC, DeVries AL., Biophys. J. 59(2), 1991
PMID: 2009357

Haymet, J. Am. Chem. Soc. 121(), 1999
Artificial antifreeze proteins can improve NaCl tolerance when expressed in E. coli.
Holmberg N, Lilius G, Bulow L., FEBS Lett. 349(3), 1994
PMID: 8050596
Cystine-rich fish antifreeze is produced as an active proprotein precursor in fall armyworm cells.
Duncker BP, Gauthier SY, Davies PL., Biochem. Biophys. Res. Commun. 203(3), 1994
PMID: 7945337
Biosynthetic production of type II fish antifreeze protein: fermentation by Pichia pastoris.
Loewen MC, Liu X, Davies PL, Daugulis AJ., Appl. Microbiol. Biotechnol. 48(4), 1997
PMID: 9390456
Antifreeze glycoprotein activity correlates with long-range protein-water dynamics.
Ebbinghaus S, Meister K, Born B, DeVries AL, Gruebele M, Havenith M., J. Am. Chem. Soc. 132(35), 2010
PMID: 20712311

AUTHOR UNKNOWN, 0
Design and synthesis of antifreeze glycoproteins and mimics.
Garner J, Harding MM., Chembiochem 11(18), 2010
PMID: 21108270
A biological antifreeze.
Feeney RE., Am. Sci. 62(6), 1974
PMID: 4440942

AUTHOR UNKNOWN, 0
Studies on the structure and activity of low molecular weight glycoproteins from an antarctic fish.
Lin Y, Duman JG, DeVries AL., Biochem. Biophys. Res. Commun. 46(1), 1972
PMID: 5006918
Antifreeze glycoproteins from the blood of an antarctic fish. The structure of the proline-containing glycopeptides.
Morris HR, Thompson MR, Osuga DT, Ahmed AI, Chan SM, Vandenheede JR, Feeney RE., J. Biol. Chem. 253(14), 1978
PMID: 670183
Purification and primary sequences of the major arginine-containing antifreeze glycopeptides from the fish Eleginus gracilis.
Burcham TS, Osuga DT, Rao BN, Bush CA, Feeney RE., J. Biol. Chem. 261(14), 1986
PMID: 3700395

Wöhrmann, Mar. Ecol. Prog. Ser. 130(), 1996

Tachibana, Angew. Chem. 116(), 2004
Antifreeze glycoproteins: elucidation of the structural motifs that are essential for antifreeze activity.
Tachibana Y, Fletcher GL, Fujitani N, Tsuda S, Monde K, Nishimura S., Angew. Chem. Int. Ed. Engl. 43(7), 2004
PMID: 14767958

Tsuda, Chem. Commun. (), 1996

Tachibana, Tetrahedron 58(), 2002
Facile solid-phase synthesis of an antifreeze glycoprotein.
Tseng PH, Jiaang WT, Chang MY, Chen ST., Chemistry 7(3), 2001
PMID: 11261655
Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers.
Nagel L, Plattner C, Budke C, Majer Z, DeVries AL, Berkemeier T, Koop T, Sewald N., Amino Acids 41(3), 2011
PMID: 21603949

Norgren, Synthesis 3(), 2009

Peltier, Cryst. Growth Des. 10(), 2010
Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies.
Heggemann C, Budke C, Schomburg B, Majer Z, Wissbrock M, Koop T, Sewald N., Amino Acids 38(1), 2009
PMID: 19165574
Synthesis of fish antifreeze neoglycopeptides using microwave-assisted "click chemistry".
Miller N, Williams GM, Brimble MA., Org. Lett. 11(11), 2009
PMID: 19473046
Conformation of the antifreeze glycoprotein of polar fish.
Bush CA, Ralapati S, Matson GM, Yamasaki RB, Osuga DT, Yeh Y, Feeney RE., Arch. Biochem. Biophys. 232(2), 1984
PMID: 6087734

Bush, Int. J. Pept. Protein Res. 28(), 2009

AUTHOR UNKNOWN, 0
Conformational and dynamic properties of a 14 residue antifreeze glycopeptide from Antarctic cod.
Lane AN, Hays LM, Feeney RE, Crowe LM, Crowe JH., Protein Sci. 7(7), 1998
PMID: 9684888
Comparison of the solution conformation and dynamics of antifreeze glycoproteins from Antarctic fish.
Lane AN, Hays LM, Tsvetkova N, Feeney RE, Crowe LM, Crowe JH., Biophys. J. 78(6), 2000
PMID: 10827996

AUTHOR UNKNOWN, 0

Erdmann, Angew. Chem. 123(), 2011
Functionalizable oligoprolines as molecular scaffolds.
Nagel YA, Kuemin M, Wennemers H., Chimia (Aarau) 65(4), 2011
PMID: 21678776

Erdmann, Chimia 63(), 2009

Kuemin, Angew. Chem. 122(), 2010
Tuning the cis/trans conformer ratio of Xaa-Pro amide bonds by intramolecular hydrogen bonds: the effect on PPII helix stability.
Kuemin M, Nagel YA, Schweizer S, Monnard FW, Ochsenfeld C, Wennemers H., Angew. Chem. Int. Ed. Engl. 49(36), 2010
PMID: 20665611
One-pot azidochlorination of glycals.
Plattner C, Hofener M, Sewald N., Org. Lett. 13(4), 2011
PMID: 21244046

Hanessian, Can. J. Chem. 53(), 1975

AUTHOR UNKNOWN, 0
Functionalizable collagen model peptides.
Erdmann RS, Wennemers H., J. Am. Chem. Soc. 132(40), 2010
PMID: 20849115

AUTHOR UNKNOWN, 0
Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition.
Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG., J. Am. Chem. Soc. 125(11), 2003
PMID: 12630856

Rostovtsev, Angew. Chem. 114(), 2002
A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes.
Rostovtsev VV, Green LG, Fokin VV, Sharpless KB., Angew. Chem. Int. Ed. Engl. 41(14), 2002
PMID: 12203546

Bush, Int. J. Pept. Protein Res. 17(), 2009
Polyproline II conformation is one of many local conformational states and is not an overall conformation of unfolded peptides and proteins.
Makowska J, Rodziewicz-Motowidlo S, Baginska K, Vila JA, Liwo A, Chmurzynski L, Scheraga HA., Proc. Natl. Acad. Sci. U.S.A. 103(6), 2006
PMID: 16446433
A survey of left-handed polyproline II helices.
Stapley BJ, Creamer TP., Protein Sci. 8(3), 1999
PMID: 10091661
Host-guest scale of left-handed polyproline II helix formation.
Rucker AL, Pager CT, Campbell MN, Qualls JE, Creamer TP., Proteins 53(1), 2003
PMID: 12945050
Adsorption-induced conformational changes of antifreeze glycoproteins at the ice/water interface.
Uda Y, Zepeda S, Kaneko F, Matsuura Y, Furukawa Y., J Phys Chem B 111(51), 2007
PMID: 18047311

AUTHOR UNKNOWN, 0
Electrostatic interactions in collagen-like triple-helical peptides.
Venugopal MG, Ramshaw JA, Braswell E, Zhu D, Brodsky B., Biochemistry 33(25), 1994
PMID: 8011657

AUTHOR UNKNOWN, 0
The dynamics, structure, and conformational free energy of proline-containing antifreeze glycoprotein.
Nguyen DH, Colvin ME, Yeh Y, Feeney RE, Fink WH., Biophys. J. 82(6), 2002
PMID: 12023212
New insights into alpha-GalNAc-Ser motif: influence of hydrogen bonding versus solvent interactions on the preferred conformation.
Corzana F, Busto JH, Jimenez-Oses G, Asensio JL, Jimenez-Barbero J, Peregrina JM, Avenoza A., J. Am. Chem. Soc. 128(45), 2006
PMID: 17090050

Corzana, Eur. J. Org. Chem. (), 2010
Serine versus threonine glycosylation: the methyl group causes a drastic alteration on the carbohydrate orientation and on the surrounding water shell.
Corzana F, Busto JH, Jimenez-Oses G, Garcia de Luis M, Asensio JL, Jimenez-Barbero J, Peregrina JM, Avenoza A., J. Am. Chem. Soc. 129(30), 2007
PMID: 17616194
Solution conformation of C-linked antifreeze glycoprotein analogues and modulation of ice recrystallization.
Tam RY, Rowley CN, Petrov I, Zhang T, Afagh NA, Woo TK, Ben RN., J. Am. Chem. Soc. 131(43), 2009
PMID: 19824639

AUTHOR UNKNOWN, 0
New chain conformations of poly(glutamic acid) and polylysine.
Tiffany ML, Krimm S., Biopolymers 6(9), 1968
PMID: 5669472

Tiffany, Biopolymers 8(), 1969

AUTHOR UNKNOWN, 0

Woody, 1985
The polyproline II conformation in short alanine peptides is noncooperative.
Chen K, Liu Z, Kallenbach NR., Proc. Natl. Acad. Sci. U.S.A. 101(43), 2004
PMID: 15489268
Solvent dependence of PII conformation in model alanine peptides.
Liu Z, Chen K, Ng A, Shi Z, Woody RW, Kallenbach NR., J. Am. Chem. Soc. 126(46), 2004
PMID: 15548011
Defining solution conformations of small linear peptides.
Dyson HJ, Wright PE., Annu Rev Biophys Biophys Chem 20(), 1991
PMID: 1867725

AUTHOR UNKNOWN, 0
Contiguous O-galactosylation of 4(R)-hydroxy-l-proline residues forms very stable polyproline II helices.
Owens NW, Stetefeld J, Lattova E, Schweizer F., J. Am. Chem. Soc. 132(14), 2010
PMID: 20334378
Conformational studies of a synthetic peptide corresponding to the repeat motif of C hordein.
Tatham AS, Drake AF, Shewry PR., Biochem. J. 259(2), 1989
PMID: 2719660

AUTHOR UNKNOWN, 0
Triple-helical peptides: an approach to collagen conformation, stability, and self-association.
Brodsky B, Thiagarajan G, Madhan B, Kar K., Biopolymers 89(5), 2008
PMID: 18275087

Engel, Top. Curr. Chem. 247(), 2005

Rothe, Angew. Chem. 88(), 1976
NMR spectroscopic detection of cis and trans peptide bonds in unprotected oligo-L-prolines.
Rothe M, Rott H., Angew. Chem. Int. Ed. Engl. 15(12), 1976
PMID: 827943
Stereoelectronic effects on polyproline conformation.
Horng JC, Raines RT., Protein Sci. 15(1), 2006
PMID: 16373476
Nonequilibrium antifreeze peptides and the recrystallization of ice.
Knight CA, Wen D, Laursen RA., Cryobiology 32(1), 1995
PMID: 7697996
Material in PUB:
Teil dieser Dissertation
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22930587
PubMed | Europe PMC

Suchen in

Google Scholar