Influence of Sequential Modifications and Carbohydrate Variations in Synthetic AFGP Analogues on Conformation and Antifreeze Activity
Nagel L, Budke C, Erdmann RS, Dreyer A, Wennemers H, Koop T, Sewald N (2012)
Chemistry - A European Journal 18(40): 12783-12793.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Nagel, LillyUniBi;
Budke, CarstenUniBi;
Erdmann, Roman S.;
Dreyer, AxelUniBi;
Wennemers, Helma;
Koop, ThomasUniBi ;
Sewald, NorbertUniBi
Einrichtung
Abstract / Bemerkung
Certain Arctic and Antarctic ectotherm species have developed strategies for survival under low temperature conditions that, among others, consist of antifreeze glycopeptides (AFGP). AFGP form a class of biological antifreeze agents that exhibit the ability to inhibit ice growth in vitro and in vivo and, hence, enable life at temperatures below the freezing point. AFGP usually consist of a varying number of (Ala-Ala-Thr)(n) units (n=4-55) with the disaccharide beta-D-galactosyl-(1 -> 3)-alpha-N-acetyl-d-galactosamine glycosidically attached to every threonine side chain hydroxyl group. AFGP have been shown to adopt polyproline II helical conformation. Although this pattern is highly conserved among different species, microheterogeneity concerning the amino acid composition usually occurs; for example, alanine is occasionally replaced by proline in smaller AFGP. The influence of minor and major sequence mutations on conformation and antifreeze activity of AFGP analogues was investigated by replacement of alanine by proline and glycosylated threonine by glycosylated hydroxyproline. The target compounds were prepared by using microwave-enhanced solid phase peptide synthesis. Furthermore, artificial analogues were obtained by copper-catalyzed azide-alkyne cycloaddition (CuAAC): propargyl glycosides were treated with polyproline helix II-forming peptides comprising (Pro-Azp-Pro)(n) units (n = 2-4) that contained 4-azidoproline (Azp). The conformations of all analogues were examined by circular dichroism (CD). In addition, microphysical analysis was performed to provide information on their inhibitory effect on ice recrystallization.
Stichworte
recrystallization;
microwave chemistry;
ice;
glycopeptides;
circular dichroism;
bioorganic chemistry
Erscheinungsjahr
2012
Zeitschriftentitel
Chemistry - A European Journal
Band
18
Ausgabe
40
Seite(n)
12783-12793
ISSN
0947-6539
Page URI
https://pub.uni-bielefeld.de/record/2536081
Zitieren
Nagel L, Budke C, Erdmann RS, et al. Influence of Sequential Modifications and Carbohydrate Variations in Synthetic AFGP Analogues on Conformation and Antifreeze Activity. Chemistry - A European Journal. 2012;18(40):12783-12793.
Nagel, L., Budke, C., Erdmann, R. S., Dreyer, A., Wennemers, H., Koop, T., & Sewald, N. (2012). Influence of Sequential Modifications and Carbohydrate Variations in Synthetic AFGP Analogues on Conformation and Antifreeze Activity. Chemistry - A European Journal, 18(40), 12783-12793.
Nagel, Lilly, Budke, Carsten, Erdmann, Roman S., Dreyer, Axel, Wennemers, Helma, Koop, Thomas, and Sewald, Norbert. 2012. “Influence of Sequential Modifications and Carbohydrate Variations in Synthetic AFGP Analogues on Conformation and Antifreeze Activity”. Chemistry - A European Journal 18 (40): 12783-12793.
Nagel, L., Budke, C., Erdmann, R. S., Dreyer, A., Wennemers, H., Koop, T., and Sewald, N. (2012). Influence of Sequential Modifications and Carbohydrate Variations in Synthetic AFGP Analogues on Conformation and Antifreeze Activity. Chemistry - A European Journal 18, 12783-12793.
Nagel, L., et al., 2012. Influence of Sequential Modifications and Carbohydrate Variations in Synthetic AFGP Analogues on Conformation and Antifreeze Activity. Chemistry - A European Journal, 18(40), p 12783-12793.
L. Nagel, et al., “Influence of Sequential Modifications and Carbohydrate Variations in Synthetic AFGP Analogues on Conformation and Antifreeze Activity”, Chemistry - A European Journal, vol. 18, 2012, pp. 12783-12793.
Nagel, L., Budke, C., Erdmann, R.S., Dreyer, A., Wennemers, H., Koop, T., Sewald, N.: Influence of Sequential Modifications and Carbohydrate Variations in Synthetic AFGP Analogues on Conformation and Antifreeze Activity. Chemistry - A European Journal. 18, 12783-12793 (2012).
Nagel, Lilly, Budke, Carsten, Erdmann, Roman S., Dreyer, Axel, Wennemers, Helma, Koop, Thomas, and Sewald, Norbert. “Influence of Sequential Modifications and Carbohydrate Variations in Synthetic AFGP Analogues on Conformation and Antifreeze Activity”. Chemistry - A European Journal 18.40 (2012): 12783-12793.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
10 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Synthesis and conformational preferences of short analogues of antifreeze glycopeptides (AFGP).
Urbańczyk M, Jewgiński M, Krzciuk-Gula J, Góra J, Latajka R, Sewald N., Beilstein J Org Chem 15(), 2019
PMID: 31435440
Urbańczyk M, Jewgiński M, Krzciuk-Gula J, Góra J, Latajka R, Sewald N., Beilstein J Org Chem 15(), 2019
PMID: 31435440
Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012.
Harvey DJ., Mass Spectrom Rev 36(3), 2017
PMID: 26270629
Harvey DJ., Mass Spectrom Rev 36(3), 2017
PMID: 26270629
Antifreeze glycopeptides: from structure and activity studies to current approaches in chemical synthesis.
Urbańczyk M, Góra J, Latajka R, Sewald N., Amino Acids 49(2), 2017
PMID: 27913993
Urbańczyk M, Góra J, Latajka R, Sewald N., Amino Acids 49(2), 2017
PMID: 27913993
Total Synthesis of O-GalNAcylated Antifreeze Glycoprotein using the Switchable Reactivity of Peptidyl-N-pivaloylguanidine.
Orii R, Sakamoto N, Fukami D, Tsuda S, Izumi M, Kajihara Y, Okamoto R., Chemistry 23(39), 2017
PMID: 28516497
Orii R, Sakamoto N, Fukami D, Tsuda S, Izumi M, Kajihara Y, Okamoto R., Chemistry 23(39), 2017
PMID: 28516497
Heterovalent Glycodendrimers as Epitope Carriers for Antitumor Synthetic Vaccines.
Pifferi C, Thomas B, Goyard D, Berthet N, Renaudet O., Chemistry 23(64), 2017
PMID: 28845889
Pifferi C, Thomas B, Goyard D, Berthet N, Renaudet O., Chemistry 23(64), 2017
PMID: 28845889
Tailored chondroitin sulfate glycomimetics via a tunable multivalent scaffold for potentiating NGF/TrkA-induced neurogenesis.
Liu P, Chen L, Toh JKC, Ang YL, Jee JE, Lim J, Lee SS, Lee SG., Chem Sci 6(1), 2015
PMID: 28694940
Liu P, Chen L, Toh JKC, Ang YL, Jee JE, Lim J, Lee SS, Lee SG., Chem Sci 6(1), 2015
PMID: 28694940
Divergent and convergent synthesis of GalNAc-conjugated dendrimers using dual orthogonal ligations.
Thomas B, Pifferi C, Daskhan GC, Fiore M, Berthet N, Renaudet O., Org Biomol Chem 13(47), 2015
PMID: 26464062
Thomas B, Pifferi C, Daskhan GC, Fiore M, Berthet N, Renaudet O., Org Biomol Chem 13(47), 2015
PMID: 26464062
Perturbation of long-range water dynamics as the mechanism for the antifreeze activity of antifreeze glycoprotein.
Mallajosyula SS, Vanommeslaeghe K, MacKerell AD., J Phys Chem B 118(40), 2014
PMID: 25137353
Mallajosyula SS, Vanommeslaeghe K, MacKerell AD., J Phys Chem B 118(40), 2014
PMID: 25137353
Antifreeze peptides and glycopeptides, and their derivatives: potential uses in biotechnology.
Bang JK, Lee JH, Murugan RN, Lee SG, Do H, Koh HY, Shim HE, Kim HC, Kim HJ., Mar Drugs 11(6), 2013
PMID: 23752356
Bang JK, Lee JH, Murugan RN, Lee SG, Do H, Koh HY, Shim HE, Kim HC, Kim HJ., Mar Drugs 11(6), 2013
PMID: 23752356
Antifreeze glycopeptide diastereomers.
Nagel L, Budke C, Dreyer A, Koop T, Sewald N., Beilstein J Org Chem 8(), 2012
PMID: 23209499
Nagel L, Budke C, Dreyer A, Koop T, Sewald N., Beilstein J Org Chem 8(), 2012
PMID: 23209499
104 References
Daten bereitgestellt von Europe PubMed Central.
AUTHOR UNKNOWN, 0
'Antifreeze' glycoproteins from polar fish.
Harding MM, Anderberg PI, Haymet AD., Eur. J. Biochem. 270(7), 2003
PMID: 12653993
Harding MM, Anderberg PI, Haymet AD., Eur. J. Biochem. 270(7), 2003
PMID: 12653993
AUTHOR UNKNOWN, 0
Structure, function and evolution of antifreeze proteins.
Ewart KV, Lin Q, Hew CL., Cell. Mol. Life Sci. 55(2), 1999
PMID: 10188586
Ewart KV, Lin Q, Hew CL., Cell. Mol. Life Sci. 55(2), 1999
PMID: 10188586
Antifreeze Proteins: Structures and Mechanisms of Function.
Yeh Y, Feeney RE., Chem. Rev. 96(2), 1996
PMID: 11848766
Yeh Y, Feeney RE., Chem. Rev. 96(2), 1996
PMID: 11848766
Solute effects on ice recrystallization: an assessment technique.
Knight CA, Hallett J, DeVries AL., Cryobiology 25(1), 1988
PMID: 3349811
Knight CA, Hallett J, DeVries AL., Cryobiology 25(1), 1988
PMID: 3349811
Inhibition of bacterial ice nucleators by fish antifreeze glycoproteins.
Parody-Morreale A, Murphy KP, Di Cera E, Fall R, DeVries AL, Gill SJ., Nature 333(6175), 1988
PMID: 3386720
Parody-Morreale A, Murphy KP, Di Cera E, Fall R, DeVries AL, Gill SJ., Nature 333(6175), 1988
PMID: 3386720
Inhibition of growth of nonbasal planes in ice by fish antifreezes.
Raymond JA, Wilson P, DeVries AL., Proc. Natl. Acad. Sci. U.S.A. 86(3), 1989
PMID: 2915983
Raymond JA, Wilson P, DeVries AL., Proc. Natl. Acad. Sci. U.S.A. 86(3), 1989
PMID: 2915983
AUTHOR UNKNOWN, 0
Fish antifreeze protein and the freezing and recrystallization of ice.
Knight CA, DeVries AL, Oolman LD., Nature 308(5956), 1984
PMID: 6700733
Knight CA, DeVries AL, Oolman LD., Nature 308(5956), 1984
PMID: 6700733
Antifreeze glycoproteins: structure, conformation, and biological applications.
Bouvet V, Ben RN., Cell Biochem. Biophys. 39(2), 2003
PMID: 14515019
Bouvet V, Ben RN., Cell Biochem. Biophys. 39(2), 2003
PMID: 14515019
Peltier, Chem. Sci. 1(), 2010
AUTHOR UNKNOWN, 0
Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes.
Knight CA, Cheng CC, DeVries AL., Biophys. J. 59(2), 1991
PMID: 2009357
Knight CA, Cheng CC, DeVries AL., Biophys. J. 59(2), 1991
PMID: 2009357
Haymet, J. Am. Chem. Soc. 121(), 1999
Artificial antifreeze proteins can improve NaCl tolerance when expressed in E. coli.
Holmberg N, Lilius G, Bulow L., FEBS Lett. 349(3), 1994
PMID: 8050596
Holmberg N, Lilius G, Bulow L., FEBS Lett. 349(3), 1994
PMID: 8050596
Cystine-rich fish antifreeze is produced as an active proprotein precursor in fall armyworm cells.
Duncker BP, Gauthier SY, Davies PL., Biochem. Biophys. Res. Commun. 203(3), 1994
PMID: 7945337
Duncker BP, Gauthier SY, Davies PL., Biochem. Biophys. Res. Commun. 203(3), 1994
PMID: 7945337
Biosynthetic production of type II fish antifreeze protein: fermentation by Pichia pastoris.
Loewen MC, Liu X, Davies PL, Daugulis AJ., Appl. Microbiol. Biotechnol. 48(4), 1997
PMID: 9390456
Loewen MC, Liu X, Davies PL, Daugulis AJ., Appl. Microbiol. Biotechnol. 48(4), 1997
PMID: 9390456
Antifreeze glycoprotein activity correlates with long-range protein-water dynamics.
Ebbinghaus S, Meister K, Born B, DeVries AL, Gruebele M, Havenith M., J. Am. Chem. Soc. 132(35), 2010
PMID: 20712311
Ebbinghaus S, Meister K, Born B, DeVries AL, Gruebele M, Havenith M., J. Am. Chem. Soc. 132(35), 2010
PMID: 20712311
AUTHOR UNKNOWN, 0
Design and synthesis of antifreeze glycoproteins and mimics.
Garner J, Harding MM., Chembiochem 11(18), 2010
PMID: 21108270
Garner J, Harding MM., Chembiochem 11(18), 2010
PMID: 21108270
AUTHOR UNKNOWN, 0
Studies on the structure and activity of low molecular weight glycoproteins from an antarctic fish.
Lin Y, Duman JG, DeVries AL., Biochem. Biophys. Res. Commun. 46(1), 1972
PMID: 5006918
Lin Y, Duman JG, DeVries AL., Biochem. Biophys. Res. Commun. 46(1), 1972
PMID: 5006918
Antifreeze glycoproteins from the blood of an antarctic fish. The structure of the proline-containing glycopeptides.
Morris HR, Thompson MR, Osuga DT, Ahmed AI, Chan SM, Vandenheede JR, Feeney RE., J. Biol. Chem. 253(14), 1978
PMID: 670183
Morris HR, Thompson MR, Osuga DT, Ahmed AI, Chan SM, Vandenheede JR, Feeney RE., J. Biol. Chem. 253(14), 1978
PMID: 670183
Purification and primary sequences of the major arginine-containing antifreeze glycopeptides from the fish Eleginus gracilis.
Burcham TS, Osuga DT, Rao BN, Bush CA, Feeney RE., J. Biol. Chem. 261(14), 1986
PMID: 3700395
Burcham TS, Osuga DT, Rao BN, Bush CA, Feeney RE., J. Biol. Chem. 261(14), 1986
PMID: 3700395
Wöhrmann, Mar. Ecol. Prog. Ser. 130(), 1996
Tachibana, Angew. Chem. 116(), 2004
Antifreeze glycoproteins: elucidation of the structural motifs that are essential for antifreeze activity.
Tachibana Y, Fletcher GL, Fujitani N, Tsuda S, Monde K, Nishimura S., Angew. Chem. Int. Ed. Engl. 43(7), 2004
PMID: 14767958
Tachibana Y, Fletcher GL, Fujitani N, Tsuda S, Monde K, Nishimura S., Angew. Chem. Int. Ed. Engl. 43(7), 2004
PMID: 14767958
Tsuda, Chem. Commun. (), 1996
Tachibana, Tetrahedron 58(), 2002
Facile solid-phase synthesis of an antifreeze glycoprotein.
Tseng PH, Jiaang WT, Chang MY, Chen ST., Chemistry 7(3), 2001
PMID: 11261655
Tseng PH, Jiaang WT, Chang MY, Chen ST., Chemistry 7(3), 2001
PMID: 11261655
Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers.
Nagel L, Plattner C, Budke C, Majer Z, DeVries AL, Berkemeier T, Koop T, Sewald N., Amino Acids 41(3), 2011
PMID: 21603949
Nagel L, Plattner C, Budke C, Majer Z, DeVries AL, Berkemeier T, Koop T, Sewald N., Amino Acids 41(3), 2011
PMID: 21603949
Norgren, Synthesis 3(), 2009
Peltier, Cryst. Growth Des. 10(), 2010
Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies.
Heggemann C, Budke C, Schomburg B, Majer Z, Wissbrock M, Koop T, Sewald N., Amino Acids 38(1), 2009
PMID: 19165574
Heggemann C, Budke C, Schomburg B, Majer Z, Wissbrock M, Koop T, Sewald N., Amino Acids 38(1), 2009
PMID: 19165574
Synthesis of fish antifreeze neoglycopeptides using microwave-assisted "click chemistry".
Miller N, Williams GM, Brimble MA., Org. Lett. 11(11), 2009
PMID: 19473046
Miller N, Williams GM, Brimble MA., Org. Lett. 11(11), 2009
PMID: 19473046
Conformation of the antifreeze glycoprotein of polar fish.
Bush CA, Ralapati S, Matson GM, Yamasaki RB, Osuga DT, Yeh Y, Feeney RE., Arch. Biochem. Biophys. 232(2), 1984
PMID: 6087734
Bush CA, Ralapati S, Matson GM, Yamasaki RB, Osuga DT, Yeh Y, Feeney RE., Arch. Biochem. Biophys. 232(2), 1984
PMID: 6087734
Bush, Int. J. Pept. Protein Res. 28(), 2009
AUTHOR UNKNOWN, 0
Conformational and dynamic properties of a 14 residue antifreeze glycopeptide from Antarctic cod.
Lane AN, Hays LM, Feeney RE, Crowe LM, Crowe JH., Protein Sci. 7(7), 1998
PMID: 9684888
Lane AN, Hays LM, Feeney RE, Crowe LM, Crowe JH., Protein Sci. 7(7), 1998
PMID: 9684888
Comparison of the solution conformation and dynamics of antifreeze glycoproteins from Antarctic fish.
Lane AN, Hays LM, Tsvetkova N, Feeney RE, Crowe LM, Crowe JH., Biophys. J. 78(6), 2000
PMID: 10827996
Lane AN, Hays LM, Tsvetkova N, Feeney RE, Crowe LM, Crowe JH., Biophys. J. 78(6), 2000
PMID: 10827996
AUTHOR UNKNOWN, 0
Erdmann, Angew. Chem. 123(), 2011
Importance of ring puckering versus interstrand hydrogen bonds for the conformational stability of collagen.
Erdmann RS, Wennemers H., Angew. Chem. Int. Ed. Engl. 50(30), 2011
PMID: 21656877
Erdmann RS, Wennemers H., Angew. Chem. Int. Ed. Engl. 50(30), 2011
PMID: 21656877
Functionalizable oligoprolines as molecular scaffolds.
Nagel YA, Kuemin M, Wennemers H., Chimia (Aarau) 65(4), 2011
PMID: 21678776
Nagel YA, Kuemin M, Wennemers H., Chimia (Aarau) 65(4), 2011
PMID: 21678776
Erdmann, Chimia 63(), 2009
Azidoproline containing helices: stabilization of the polyproline II structure by a functionalizable group.
Kumin M, Sonntag LS, Wennemers H., J. Am. Chem. Soc. 129(3), 2007
PMID: 17226990
Kumin M, Sonntag LS, Wennemers H., J. Am. Chem. Soc. 129(3), 2007
PMID: 17226990
Kuemin, Angew. Chem. 122(), 2010
Tuning the cis/trans conformer ratio of Xaa-Pro amide bonds by intramolecular hydrogen bonds: the effect on PPII helix stability.
Kuemin M, Nagel YA, Schweizer S, Monnard FW, Ochsenfeld C, Wennemers H., Angew. Chem. Int. Ed. Engl. 49(36), 2010
PMID: 20665611
Kuemin M, Nagel YA, Schweizer S, Monnard FW, Ochsenfeld C, Wennemers H., Angew. Chem. Int. Ed. Engl. 49(36), 2010
PMID: 20665611
Temperature-induced transition between polyproline I and II helices: quantitative fitting of hysteresis effects.
Kuemin M, Engel J, Wennemers H., J. Pept. Sci. 16(10), 2010
PMID: 20862727
Kuemin M, Engel J, Wennemers H., J. Pept. Sci. 16(10), 2010
PMID: 20862727
One-pot azidochlorination of glycals.
Plattner C, Hofener M, Sewald N., Org. Lett. 13(4), 2011
PMID: 21244046
Plattner C, Hofener M, Sewald N., Org. Lett. 13(4), 2011
PMID: 21244046
Hanessian, Can. J. Chem. 53(), 1975
AUTHOR UNKNOWN, 0
Conformational stability of collagen triple helices functionalized in the Yaa position by click chemistry.
Erdmann RS, Wennemers H., Org. Biomol. Chem. 10(10), 2012
PMID: 22266764
Erdmann RS, Wennemers H., Org. Biomol. Chem. 10(10), 2012
PMID: 22266764
Functionalizable collagen model peptides.
Erdmann RS, Wennemers H., J. Am. Chem. Soc. 132(40), 2010
PMID: 20849115
Erdmann RS, Wennemers H., J. Am. Chem. Soc. 132(40), 2010
PMID: 20849115
AUTHOR UNKNOWN, 0
Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition.
Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG., J. Am. Chem. Soc. 125(11), 2003
PMID: 12630856
Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG., J. Am. Chem. Soc. 125(11), 2003
PMID: 12630856
Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides.
Tornoe CW, Christensen C, Meldal M., J. Org. Chem. 67(9), 2002
PMID: 11975567
Tornoe CW, Christensen C, Meldal M., J. Org. Chem. 67(9), 2002
PMID: 11975567
Rostovtsev, Angew. Chem. 114(), 2002
A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes.
Rostovtsev VV, Green LG, Fokin VV, Sharpless KB., Angew. Chem. Int. Ed. Engl. 41(14), 2002
PMID: 12203546
Rostovtsev VV, Green LG, Fokin VV, Sharpless KB., Angew. Chem. Int. Ed. Engl. 41(14), 2002
PMID: 12203546
Bush, Int. J. Pept. Protein Res. 17(), 2009
Polyproline II conformation is one of many local conformational states and is not an overall conformation of unfolded peptides and proteins.
Makowska J, Rodziewicz-Motowidlo S, Baginska K, Vila JA, Liwo A, Chmurzynski L, Scheraga HA., Proc. Natl. Acad. Sci. U.S.A. 103(6), 2006
PMID: 16446433
Makowska J, Rodziewicz-Motowidlo S, Baginska K, Vila JA, Liwo A, Chmurzynski L, Scheraga HA., Proc. Natl. Acad. Sci. U.S.A. 103(6), 2006
PMID: 16446433
The structure of "unstructured" regions in peptides and proteins: role of the polyproline II helix in protein folding and recognition.
Rath A, Davidson AR, Deber CM., Biopolymers 80(2-3), 2005
PMID: 15700296
Rath A, Davidson AR, Deber CM., Biopolymers 80(2-3), 2005
PMID: 15700296
A survey of left-handed polyproline II helices.
Stapley BJ, Creamer TP., Protein Sci. 8(3), 1999
PMID: 10091661
Stapley BJ, Creamer TP., Protein Sci. 8(3), 1999
PMID: 10091661
Host-guest scale of left-handed polyproline II helix formation.
Rucker AL, Pager CT, Campbell MN, Qualls JE, Creamer TP., Proteins 53(1), 2003
PMID: 12945050
Rucker AL, Pager CT, Campbell MN, Qualls JE, Creamer TP., Proteins 53(1), 2003
PMID: 12945050
Adsorption-induced conformational changes of antifreeze glycoproteins at the ice/water interface.
Uda Y, Zepeda S, Kaneko F, Matsuura Y, Furukawa Y., J Phys Chem B 111(51), 2007
PMID: 18047311
Uda Y, Zepeda S, Kaneko F, Matsuura Y, Furukawa Y., J Phys Chem B 111(51), 2007
PMID: 18047311
AUTHOR UNKNOWN, 0
Reassessment of the electronic circular dichroism criteria for random coil conformations of poly(L-lysine) and the implications for protein folding and denaturation studies.
Drake AF, Siligardi G, Gibbons WA., Biophys. Chem. 31(1-2), 1988
PMID: 3233285
Drake AF, Siligardi G, Gibbons WA., Biophys. Chem. 31(1-2), 1988
PMID: 3233285
Electrostatic interactions in collagen-like triple-helical peptides.
Venugopal MG, Ramshaw JA, Braswell E, Zhu D, Brodsky B., Biochemistry 33(25), 1994
PMID: 8011657
Venugopal MG, Ramshaw JA, Braswell E, Zhu D, Brodsky B., Biochemistry 33(25), 1994
PMID: 8011657
Role of carbohydrate in stabilizing the triple-helix in a model for a deep-sea hydrothermal vent worm collagen.
Bann JG, Bachinger HP, Peyton DH., Biochemistry 42(14), 2003
PMID: 12680757
Bann JG, Bachinger HP, Peyton DH., Biochemistry 42(14), 2003
PMID: 12680757
Glycosylation/Hydroxylation-induced stabilization of the collagen triple helix. 4-trans-hydroxyproline in the Xaa position can stabilize the triple helix.
Bann JG, Bachinger HP., J. Biol. Chem. 275(32), 2000
PMID: 10827193
Bann JG, Bachinger HP., J. Biol. Chem. 275(32), 2000
PMID: 10827193
AUTHOR UNKNOWN, 0
The dynamics, structure, and conformational free energy of proline-containing antifreeze glycoprotein.
Nguyen DH, Colvin ME, Yeh Y, Feeney RE, Fink WH., Biophys. J. 82(6), 2002
PMID: 12023212
Nguyen DH, Colvin ME, Yeh Y, Feeney RE, Fink WH., Biophys. J. 82(6), 2002
PMID: 12023212
New insights into alpha-GalNAc-Ser motif: influence of hydrogen bonding versus solvent interactions on the preferred conformation.
Corzana F, Busto JH, Jimenez-Oses G, Asensio JL, Jimenez-Barbero J, Peregrina JM, Avenoza A., J. Am. Chem. Soc. 128(45), 2006
PMID: 17090050
Corzana F, Busto JH, Jimenez-Oses G, Asensio JL, Jimenez-Barbero J, Peregrina JM, Avenoza A., J. Am. Chem. Soc. 128(45), 2006
PMID: 17090050
Corzana, Eur. J. Org. Chem. (), 2010
Serine versus threonine glycosylation: the methyl group causes a drastic alteration on the carbohydrate orientation and on the surrounding water shell.
Corzana F, Busto JH, Jimenez-Oses G, Garcia de Luis M, Asensio JL, Jimenez-Barbero J, Peregrina JM, Avenoza A., J. Am. Chem. Soc. 129(30), 2007
PMID: 17616194
Corzana F, Busto JH, Jimenez-Oses G, Garcia de Luis M, Asensio JL, Jimenez-Barbero J, Peregrina JM, Avenoza A., J. Am. Chem. Soc. 129(30), 2007
PMID: 17616194
Solution conformation of C-linked antifreeze glycoprotein analogues and modulation of ice recrystallization.
Tam RY, Rowley CN, Petrov I, Zhang T, Afagh NA, Woo TK, Ben RN., J. Am. Chem. Soc. 131(43), 2009
PMID: 19824639
Tam RY, Rowley CN, Petrov I, Zhang T, Afagh NA, Woo TK, Ben RN., J. Am. Chem. Soc. 131(43), 2009
PMID: 19824639
Influence of solvent and intramolecular hydrogen bonding on the conformational properties of o-linked glycopeptides.
Mallajosyula SS, MacKerell AD Jr., J Phys Chem B 115(38), 2011
PMID: 21823626
Mallajosyula SS, MacKerell AD Jr., J Phys Chem B 115(38), 2011
PMID: 21823626
AUTHOR UNKNOWN, 0
New chain conformations of poly(glutamic acid) and polylysine.
Tiffany ML, Krimm S., Biopolymers 6(9), 1968
PMID: 5669472
Tiffany ML, Krimm S., Biopolymers 6(9), 1968
PMID: 5669472
Tiffany, Biopolymers 8(), 1969
Reassessment of the random coil conformation: vibrational CD study of proline oligopeptides and related polypeptides.
Dukor RK, Keiderling TA., Biopolymers 31(14), 1991
PMID: 1793813
Dukor RK, Keiderling TA., Biopolymers 31(14), 1991
PMID: 1793813
AUTHOR UNKNOWN, 0
Woody, 1985
The polyproline II conformation in short alanine peptides is noncooperative.
Chen K, Liu Z, Kallenbach NR., Proc. Natl. Acad. Sci. U.S.A. 101(43), 2004
PMID: 15489268
Chen K, Liu Z, Kallenbach NR., Proc. Natl. Acad. Sci. U.S.A. 101(43), 2004
PMID: 15489268
Solvent dependence of PII conformation in model alanine peptides.
Liu Z, Chen K, Ng A, Shi Z, Woody RW, Kallenbach NR., J. Am. Chem. Soc. 126(46), 2004
PMID: 15548011
Liu Z, Chen K, Ng A, Shi Z, Woody RW, Kallenbach NR., J. Am. Chem. Soc. 126(46), 2004
PMID: 15548011
Defining solution conformations of small linear peptides.
Dyson HJ, Wright PE., Annu Rev Biophys Biophys Chem 20(), 1991
PMID: 1867725
Dyson HJ, Wright PE., Annu Rev Biophys Biophys Chem 20(), 1991
PMID: 1867725
AUTHOR UNKNOWN, 0
Contiguous O-galactosylation of 4(R)-hydroxy-l-proline residues forms very stable polyproline II helices.
Owens NW, Stetefeld J, Lattova E, Schweizer F., J. Am. Chem. Soc. 132(14), 2010
PMID: 20334378
Owens NW, Stetefeld J, Lattova E, Schweizer F., J. Am. Chem. Soc. 132(14), 2010
PMID: 20334378
Conformational studies of a synthetic peptide corresponding to the repeat motif of C hordein.
Tatham AS, Drake AF, Shewry PR., Biochem. J. 259(2), 1989
PMID: 2719660
Tatham AS, Drake AF, Shewry PR., Biochem. J. 259(2), 1989
PMID: 2719660
AUTHOR UNKNOWN, 0
Triple-helical peptides: an approach to collagen conformation, stability, and self-association.
Brodsky B, Thiagarajan G, Madhan B, Kar K., Biopolymers 89(5), 2008
PMID: 18275087
Brodsky B, Thiagarajan G, Madhan B, Kar K., Biopolymers 89(5), 2008
PMID: 18275087
Engel, Top. Curr. Chem. 247(), 2005
Perspectives on the synthesis and application of triple-helical, collagen-model peptides.
Fields GB, Prockop DJ., Biopolymers 40(4), 1996
PMID: 8765606
Fields GB, Prockop DJ., Biopolymers 40(4), 1996
PMID: 8765606
Rothe, Angew. Chem. 88(), 1976
NMR spectroscopic detection of cis and trans peptide bonds in unprotected oligo-L-prolines.
Rothe M, Rott H., Angew. Chem. Int. Ed. Engl. 15(12), 1976
PMID: 827943
Rothe M, Rott H., Angew. Chem. Int. Ed. Engl. 15(12), 1976
PMID: 827943
Stereoelectronic effects on polyproline conformation.
Horng JC, Raines RT., Protein Sci. 15(1), 2006
PMID: 16373476
Horng JC, Raines RT., Protein Sci. 15(1), 2006
PMID: 16373476
Effects of terminal functional groups on the stability of the polyproline II structure: a combined experimental and theoretical study.
Kuemin M, Schweizer S, Ochsenfeld C, Wennemers H., J. Am. Chem. Soc. 131(42), 2009
PMID: 19791741
Kuemin M, Schweizer S, Ochsenfeld C, Wennemers H., J. Am. Chem. Soc. 131(42), 2009
PMID: 19791741
Nonequilibrium antifreeze peptides and the recrystallization of ice.
Knight CA, Wen D, Laursen RA., Cryobiology 32(1), 1995
PMID: 7697996
Knight CA, Wen D, Laursen RA., Cryobiology 32(1), 1995
PMID: 7697996
Ice recrystallization inhibition and molecular recognition of ice faces by poly(vinyl alcohol).
Budke C, Koop T., Chemphyschem 7(12), 2006
PMID: 17109452
Budke C, Koop T., Chemphyschem 7(12), 2006
PMID: 17109452
Ice recrystallization kinetics in the presence of synthetic antifreeze glycoprotein analogues using the framework of LSW theory.
Budke C, Heggemann C, Koch M, Sewald N, Koop T., J Phys Chem B 113(9), 2009
PMID: 19708116
Budke C, Heggemann C, Koch M, Sewald N, Koop T., J Phys Chem B 113(9), 2009
PMID: 19708116
Material in PUB:
Teil dieser Dissertation
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 22930587
PubMed | Europe PMC
Suchen in