Neuronal representation of visual motion and orientation in the fly medulla
Spalthoff C, Gerdes R, Kurtz R (2012)
Frontiers in Neural Circuits 6: 72.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Spalthoff, ChristianUniBi;
Gerdes, Ralf;
Kurtz, RafaelUniBi
Einrichtung
Abstract / Bemerkung
In insects, the first extraction of motion and direction clues from local brightness modulations is thought to take place in the medulla. However, whether and how these computations are represented in the medulla stills remain widely unknown, because electrical recording of the neurons in the medulla is difficult. As an effort to overcome this difficulty, we employed local electroporation in vivo in the medulla of the blowfly (Calliphora vicina) to stain small ensembles of neurons with a calcium-sensitive dye. We studied the responses of these neuronal ensembles to spatial and temporal brightness modulations and found selectivity for grating orientation. In contrast, the responses to the two opposite directions of motion of a grating with the same orientation were similar in magnitude, indicating that strong directional selectivity is either not present in the types of neurons covered by our data set, or that direction-selective signals are too closely spaced to be distinguished by our calcium imaging. The calcium responses also showed a bell-shaped dependency on the temporal frequency of drifting gratings, with an optimum higher than that observed in one of the subsequent processing stages, i.e., the lobula plate. Medulla responses were elicited by on- as well as off-stimuli with some spatial heterogeneity in the sensitivity for “on” and “off”, and in the polarity of the responses. Medulla neurons thus show similarities to some established principles of motion and edge detection in the vertebrate visual system.
Erscheinungsjahr
2012
Zeitschriftentitel
Frontiers in Neural Circuits
Band
6
Seite(n)
72
ISSN
1662-5110
eISSN
1662-5110
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2530855
Zitieren
Spalthoff C, Gerdes R, Kurtz R. Neuronal representation of visual motion and orientation in the fly medulla. Frontiers in Neural Circuits. 2012;6:72.
Spalthoff, C., Gerdes, R., & Kurtz, R. (2012). Neuronal representation of visual motion and orientation in the fly medulla. Frontiers in Neural Circuits, 6, 72. doi:10.3389/fncir.2012.00072
Spalthoff, Christian, Gerdes, Ralf, and Kurtz, Rafael. 2012. “Neuronal representation of visual motion and orientation in the fly medulla”. Frontiers in Neural Circuits 6: 72.
Spalthoff, C., Gerdes, R., and Kurtz, R. (2012). Neuronal representation of visual motion and orientation in the fly medulla. Frontiers in Neural Circuits 6, 72.
Spalthoff, C., Gerdes, R., & Kurtz, R., 2012. Neuronal representation of visual motion and orientation in the fly medulla. Frontiers in Neural Circuits, 6, p 72.
C. Spalthoff, R. Gerdes, and R. Kurtz, “Neuronal representation of visual motion and orientation in the fly medulla”, Frontiers in Neural Circuits, vol. 6, 2012, pp. 72.
Spalthoff, C., Gerdes, R., Kurtz, R.: Neuronal representation of visual motion and orientation in the fly medulla. Frontiers in Neural Circuits. 6, 72 (2012).
Spalthoff, Christian, Gerdes, Ralf, and Kurtz, Rafael. “Neuronal representation of visual motion and orientation in the fly medulla”. Frontiers in Neural Circuits 6 (2012): 72.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:07Z
MD5 Prüfsumme
c4bf5c7ba1585845757f205d5ea3cf1b
Daten bereitgestellt von European Bioinformatics Institute (EBI)
8 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Insect Bio-inspired Neural Network Provides New Evidence on How Simple Feature Detectors Can Enable Complex Visual Generalization and Stimulus Location Invariance in the Miniature Brain of Honeybees.
Roper M, Fernando C, Chittka L., PLoS Comput Biol 13(2), 2017
PMID: 28158189
Roper M, Fernando C, Chittka L., PLoS Comput Biol 13(2), 2017
PMID: 28158189
From the Eye to the Brain: Development of the Drosophila Visual System.
Nériec N, Desplan C., Curr Top Dev Biol 116(), 2016
PMID: 26970623
Nériec N, Desplan C., Curr Top Dev Biol 116(), 2016
PMID: 26970623
Insect vision: emergence of pattern recognition from coarse encoding.
Wystrach A, Dewar AD, Graham P., Curr Biol 24(2), 2014
PMID: 24456981
Wystrach A, Dewar AD, Graham P., Curr Biol 24(2), 2014
PMID: 24456981
Scene perception and the visual control of travel direction in navigating wood ants.
Collett TS, Lent DD, Graham P., Philos Trans R Soc Lond B Biol Sci 369(1636), 2014
PMID: 24395962
Collett TS, Lent DD, Graham P., Philos Trans R Soc Lond B Biol Sci 369(1636), 2014
PMID: 24395962
Temporal statistics of natural image sequences generated by movements with insect flight characteristics.
Schwegmann A, Lindemann JP, Egelhaaf M., PLoS One 9(10), 2014
PMID: 25340761
Schwegmann A, Lindemann JP, Egelhaaf M., PLoS One 9(10), 2014
PMID: 25340761
Monitoring of single-cell responses in the optic tectum of adult zebrafish with dextran-coupled calcium dyes delivered via local electroporation.
Kassing V, Engelmann J, Kurtz R., PLoS One 8(5), 2013
PMID: 23667529
Kassing V, Engelmann J, Kurtz R., PLoS One 8(5), 2013
PMID: 23667529
Behaviorally related neural plasticity in the arthropod optic lobes.
Berón de Astrada M, Bengochea M, Sztarker J, Delorenzi A, Tomsic D., Curr Biol 23(15), 2013
PMID: 23831291
Berón de Astrada M, Bengochea M, Sztarker J, Delorenzi A, Tomsic D., Curr Biol 23(15), 2013
PMID: 23831291
Enhancement of prominent texture cues in fly optic flow processing.
Kurtz R., Front Neural Circuits 6(), 2012
PMID: 23112763
Kurtz R., Front Neural Circuits 6(), 2012
PMID: 23112763
59 References
Daten bereitgestellt von Europe PubMed Central.
Spatial and temporal integration properties of units in first optic ganglion of dipterans.
Arnett DW., J. Neurophysiol. 35(4), 1972
PMID: 5036205
Arnett DW., J. Neurophysiol. 35(4), 1972
PMID: 5036205
Inverse Batschelet distributions for circular data.
Jones MC, Pewsey A., Biometrics 68(1), 2011
PMID: 22443354
Jones MC, Pewsey A., Biometrics 68(1), 2011
PMID: 22443354
Motion detection by interneurons of optic lobes and brain of the flies Calliphora phaenicia and Musca domestica.
Bishop LG, Keehn DG, McCann GD., J. Neurophysiol. 31(4), 1968
PMID: 5709868
Bishop LG, Keehn DG, McCann GD., J. Neurophysiol. 31(4), 1968
PMID: 5709868
Principles of visual motion detection.
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948
Seeing things in motion: models, circuits, and mechanisms.
Borst A, Euler T., Neuron 71(6), 2011
PMID: 21943597
Borst A, Euler T., Neuron 71(6), 2011
PMID: 21943597
Defining the computational structure of the motion detector in Drosophila.
Clark DA, Bursztyn L, Horowitz MA, Schnitzer MJ, Clandinin TR., Neuron 70(6), 2011
PMID: 21689602
Clark DA, Bursztyn L, Horowitz MA, Schnitzer MJ, Clandinin TR., Neuron 70(6), 2011
PMID: 21689602
Visual motion-detection circuits in flies: parallel direction- and non-direction-sensitive pathways between the medulla and lobula plate.
Douglass JK, Strausfeld NJ., J. Neurosci. 16(15), 1996
PMID: 8764644
Douglass JK, Strausfeld NJ., J. Neurosci. 16(15), 1996
PMID: 8764644
Functionally and anatomically segregated visual pathways in the lobula complex of a calliphorid fly.
Douglass JK, Strausfeld NJ., J. Comp. Neurol. 396(1), 1998
PMID: 9623889
Douglass JK, Strausfeld NJ., J. Comp. Neurol. 396(1), 1998
PMID: 9623889
Retinotopic pathways providing motion-selective information to the lobula from peripheral elementary motion-detecting circuits.
Douglass JK, Strausfeld NJ., J. Comp. Neurol. 457(4), 2003
PMID: 12561074
Douglass JK, Strausfeld NJ., J. Comp. Neurol. 457(4), 2003
PMID: 12561074
Non-directional motion detectors can be used to mimic optic flow dependent behaviors.
Dyhr JP, Higgins CM., Biol Cybern 103(6), 2010
PMID: 21161268
Dyhr JP, Higgins CM., Biol Cybern 103(6), 2010
PMID: 21161268
Neural encoding of behaviourally relevant visual-motion information in the fly.
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
Internal structure of the fly elementary motion detector.
Eichner H, Joesch M, Schnell B, Reiff DF, Borst A., Neuron 70(6), 2011
PMID: 21689601
Eichner H, Joesch M, Schnell B, Reiff DF, Borst A., Neuron 70(6), 2011
PMID: 21689601
Neural mechanisms of orientation selectivity in the visual cortex.
Ferster D, Miller KD., Annu. Rev. Neurosci. 23(), 2000
PMID: 10845071
Ferster D, Miller KD., Annu. Rev. Neurosci. 23(), 2000
PMID: 10845071
The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure
Fischbach K., Dittrich A.., 1989
Fischbach K., Dittrich A.., 1989
Ca2+ imaging of identifiable neurons labeled by electroporation in insect brains.
Fujiwara T, Kazawa T, Haupt SS, Kanzaki R., Neuroreport 20(12), 2009
PMID: 19550361
Fujiwara T, Kazawa T, Haupt SS, Kanzaki R., Neuroreport 20(12), 2009
PMID: 19550361
Gal O.., 2003
Discrimination of visual motion from flicker by identified neurons in the medulla of the fleshfly Sarcophaga bullata.
Gilbert C, Penisten DK, DeVoe RD., J. Comp. Physiol. A 168(6), 1991
PMID: 1920163
Gilbert C, Penisten DK, DeVoe RD., J. Comp. Physiol. A 168(6), 1991
PMID: 1920163
The functional organization of male-specific visual neurons in flies.
Gilbert C, Strausfeld NJ., J. Comp. Physiol. A 169(4), 1991
PMID: 1723431
Gilbert C, Strausfeld NJ., J. Comp. Physiol. A 169(4), 1991
PMID: 1723431
Systemtheoretische analyse der zeit, reihenfolgen und vorzeichenauswertung bei der bewegungsperzeption des russelkafers chlorophanus
Hassenstein B., Reichardt W.., 1956
Hassenstein B., Reichardt W.., 1956
Motion sensitive interneurons in the optomotor system of the fly: II. The horizontal cells: receptive field organization and response characteristics
Hausen K.., 1982
Hausen K.., 1982
Fluorescence changes of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in vitro.
Hendel T, Mank M, Schnell B, Griesbeck O, Borst A, Reiff DF., J. Neurosci. 28(29), 2008
PMID: 18632944
Hendel T, Mank M, Schnell B, Griesbeck O, Borst A, Reiff DF., J. Neurosci. 28(29), 2008
PMID: 18632944
Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora
Hengstenberg R.., 1982
Hengstenberg R.., 1982
The computational basis of an identified neuronal circuit for elementary motion detection in dipterous insects.
Higgins CM, Douglass JK, Strausfeld NJ., Vis. Neurosci. 21(4), 2004
PMID: 15579222
Higgins CM, Douglass JK, Strausfeld NJ., Vis. Neurosci. 21(4), 2004
PMID: 15579222
Circuits that build visual cortical receptive fields.
Hirsch JA, Martinez LM., Trends Neurosci. 29(1), 2005
PMID: 16309753
Hirsch JA, Martinez LM., Trends Neurosci. 29(1), 2005
PMID: 16309753
Receptive fields, binocular interaction and functional architecture in the cat's visual cortex.
HUBEL DH, WIESEL TN., J. Physiol. (Lond.) 160(), 1962
PMID: 14449617
HUBEL DH, WIESEL TN., J. Physiol. (Lond.) 160(), 1962
PMID: 14449617
ON and OFF pathways in Drosophila motion vision.
Joesch M, Schnell B, Raghu SV, Reiff DF, Borst A., Nature 468(7321), 2010
PMID: 21068841
Joesch M, Schnell B, Raghu SV, Reiff DF, Borst A., Nature 468(7321), 2010
PMID: 21068841
Transfer of graded potentials at the photoreceptor-interneuron synapse.
Juusola M, Uusitalo RO, Weckstrom M., J. Gen. Physiol. 105(1), 1995
PMID: 7537323
Juusola M, Uusitalo RO, Weckstrom M., J. Gen. Physiol. 105(1), 1995
PMID: 7537323
Ca2+ clearance in visual motion-sensitive neurons of the fly studied in vivo by sensory stimulation and UV photolysis of caged Ca2+.
Kurtz R., J. Neurophysiol. 92(1), 2004
PMID: 15212443
Kurtz R., J. Neurophysiol. 92(1), 2004
PMID: 15212443
Application of multiline two-photon microscopy to functional in vivo imaging.
Kurtz R, Fricke M, Kalb J, Tinnefeld P, Sauer M., J. Neurosci. Methods 151(2), 2006
PMID: 16442636
Kurtz R, Fricke M, Kalb J, Tinnefeld P, Sauer M., J. Neurosci. Methods 151(2), 2006
PMID: 16442636
Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster.
Meinertzhagen IA, O'Neil SD., J. Comp. Neurol. 305(2), 1991
PMID: 1902848
Meinertzhagen IA, O'Neil SD., J. Comp. Neurol. 305(2), 1991
PMID: 1902848
The color-vision circuit in the medulla of Drosophila.
Morante J, Desplan C., Curr. Biol. 18(8), 2008
PMID: 18403201
Morante J, Desplan C., Curr. Biol. 18(8), 2008
PMID: 18403201
Insect detection of small targets moving in visual clutter.
Nordstrom K, Barnett PD, O'Carroll DC., PLoS Biol. 4(3), 2006
PMID: 16448249
Nordstrom K, Barnett PD, O'Carroll DC., PLoS Biol. 4(3), 2006
PMID: 16448249
Feature detection and the hypercomplex property in insects.
Nordstrom K, O'Carroll DC., Trends Neurosci. 32(7), 2009
PMID: 19541374
Nordstrom K, O'Carroll DC., Trends Neurosci. 32(7), 2009
PMID: 19541374
Feature-detecting neurons in dragonflies
O'Carroll D.., 1993
O'Carroll D.., 1993
Visual system of calliphorid flies: motion- and orientation-sensitive visual interneurons supplying dorsal optic glomeruli.
Okamura JY, Strausfeld NJ., J. Comp. Neurol. 500(1), 2007
PMID: 17099892
Okamura JY, Strausfeld NJ., J. Comp. Neurol. 500(1), 2007
PMID: 17099892
Higher order visual processing in macaque extrastriate cortex.
Orban GA., Physiol. Rev. 88(1), 2008
PMID: 18195083
Orban GA., Physiol. Rev. 88(1), 2008
PMID: 18195083
Directionally selective cells in the locust medulla.
Osorio D., J. Comp. Physiol. A 159(6), 1986
PMID: 3806440
Osorio D., J. Comp. Physiol. A 159(6), 1986
PMID: 3806440
Arrangement of optical axes and spatial resolution in the compound eye of the female blowfly Calliphora.
Petrowitz R, Dahmen H, Egelhaaf M, Krapp HG., J. Comp. Physiol. A 186(7-8), 2000
PMID: 11016789
Petrowitz R, Dahmen H, Egelhaaf M, Krapp HG., J. Comp. Physiol. A 186(7-8), 2000
PMID: 11016789
Neurons selective for orientation and binocular disparity in the visual Wulst of the barn owl (Tyto alba).
Pettigrew JD, Konishi M., Science 193(4254), 1976
PMID: 948741
Pettigrew JD, Konishi M., Science 193(4254), 1976
PMID: 948741
Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila.
Reiff DF, Plett J, Mank M, Griesbeck O, Borst A., Nat. Neurosci. 13(8), 2010
PMID: 20622873
Reiff DF, Plett J, Mank M, Griesbeck O, Borst A., Nat. Neurosci. 13(8), 2010
PMID: 20622873
Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster.
Rister J, Pauls D, Schnell B, Ting CY, Lee CH, Sinakevitch I, Morante J, Strausfeld NJ, Ito K, Heisenberg M., Neuron 56(1), 2007
PMID: 17920022
Rister J, Pauls D, Schnell B, Ting CY, Lee CH, Sinakevitch I, Morante J, Strausfeld NJ, Ito K, Heisenberg M., Neuron 56(1), 2007
PMID: 17920022
Calcium diffusion modeling in a spherical neuron. Relevance of buffering properties.
Sala F, Hernandez-Cruz A., Biophys. J. 57(2), 1990
PMID: 2317553
Sala F, Hernandez-Cruz A., Biophys. J. 57(2), 1990
PMID: 2317553
Design principles of insect and vertebrate visual systems.
Sanes JR, Zipursky SL., Neuron 66(1), 2010
PMID: 20399726
Sanes JR, Zipursky SL., Neuron 66(1), 2010
PMID: 20399726
Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance.
Schiller PH, Finlay BL, Volman SF., J. Neurophysiol. 39(6), 1976
PMID: 825622
Schiller PH, Finlay BL, Volman SF., J. Neurophysiol. 39(6), 1976
PMID: 825622
Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila.
Schnell B, Raghu SV, Nern A, Borst A., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 198(5), 2012
PMID: 22411431
Schnell B, Raghu SV, Nern A, Borst A., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 198(5), 2012
PMID: 22411431
Properties of elementary movement detectors in the fly Calliphora erythrocephala
Schuling F., Mastebroek H., Bult R., Lenting B.., 1989
Schuling F., Mastebroek H., Bult R., Lenting B.., 1989
Dendritic computation of direction selectivity and gain control in visual interneurons.
Single S, Haag J, Borst A., J. Neurosci. 17(16), 1997
PMID: 9236213
Single S, Haag J, Borst A., J. Neurosci. 17(16), 1997
PMID: 9236213
Spatial processing of visual information in the movement-detecting pathway of the fly
Srinivasan M., Dvorak D.., 1980
Srinivasan M., Dvorak D.., 1980
Evidence for two distinct movement-detecting mechanisms in insect vision
Srinivasan M., Zhang S., Chandrashekara K.., 1993
Srinivasan M., Zhang S., Chandrashekara K.., 1993
Strausfeld N.., 1976
Vision in insects: pathways possibly underlying neural adaptation and lateral inhibition.
Strausfeld NJ, Campos-Ortega JA., Science 195(4281), 1977
PMID: 841315
Strausfeld NJ, Campos-Ortega JA., Science 195(4281), 1977
PMID: 841315
Vision egg: an open-source library for realtime visual stimulus generation.
Straw AD., Front Neuroinform 2(), 2008
PMID: 19050754
Straw AD., Front Neuroinform 2(), 2008
PMID: 19050754
Cholinergic circuits integrate neighboring visual signals in a Drosophila motion detection pathway.
Takemura SY, Karuppudurai T, Ting CY, Lu Z, Lee CH, Meinertzhagen IA., Curr. Biol. 21(24), 2011
PMID: 22137471
Takemura SY, Karuppudurai T, Ting CY, Lu Z, Lee CH, Meinertzhagen IA., Curr. Biol. 21(24), 2011
PMID: 22137471
Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla.
Takemura SY, Lu Z, Meinertzhagen IA., J. Comp. Neurol. 509(5), 2008
PMID: 18537121
Takemura SY, Lu Z, Meinertzhagen IA., J. Comp. Neurol. 509(5), 2008
PMID: 18537121
Characterisation of a blowfly male-specific neuron using behaviourally generated visual stimuli.
Trischler C, Boeddeker N, Egelhaaf M., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 193(5), 2007
PMID: 17333206
Trischler C, Boeddeker N, Egelhaaf M., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 193(5), 2007
PMID: 17333206
Direction selectivity in the retina: symmetry and asymmetry in structure and function.
Vaney DI, Sivyer B, Taylor WR., Nat. Rev. Neurosci. 13(3), 2012
PMID: 22314444
Vaney DI, Sivyer B, Taylor WR., Nat. Rev. Neurosci. 13(3), 2012
PMID: 22314444
A model for the detection of moving targets in visual clutter inspired by insect physiology.
Wiederman SD, Shoemaker PA, O'Carroll DC., PLoS ONE 3(7), 2008
PMID: 18665213
Wiederman SD, Shoemaker PA, O'Carroll DC., PLoS ONE 3(7), 2008
PMID: 18665213
Orientation-sensitive Neurons in the Brain of the Honey Bee (Apis mellifera).
MADDESS T, YANG E., J. Insect Physiol. 43(4), 1997
PMID: 12769894
MADDESS T, YANG E., J. Insect Physiol. 43(4), 1997
PMID: 12769894
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 23087615
PubMed | Europe PMC
Suchen in