Neuronal representation of visual motion and orientation in the fly medulla

Spalthoff C, Gerdes R, Kurtz R (2012)
Frontiers in Neural Circuits 6: 72.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
In insects, the first extraction of motion and direction clues from local brightness modulations is thought to take place in the medulla. However, whether and how these computations are represented in the medulla stills remain widely unknown, because electrical recording of the neurons in the medulla is difficult. As an effort to overcome this difficulty, we employed local electroporation in vivo in the medulla of the blowfly (Calliphora vicina) to stain small ensembles of neurons with a calcium-sensitive dye. We studied the responses of these neuronal ensembles to spatial and temporal brightness modulations and found selectivity for grating orientation. In contrast, the responses to the two opposite directions of motion of a grating with the same orientation were similar in magnitude, indicating that strong directional selectivity is either not present in the types of neurons covered by our data set, or that direction-selective signals are too closely spaced to be distinguished by our calcium imaging. The calcium responses also showed a bell-shaped dependency on the temporal frequency of drifting gratings, with an optimum higher than that observed in one of the subsequent processing stages, i.e., the lobula plate. Medulla responses were elicited by on- as well as off-stimuli with some spatial heterogeneity in the sensitivity for “on” and “off”, and in the polarity of the responses. Medulla neurons thus show similarities to some established principles of motion and edge detection in the vertebrate visual system.
Frontiers in Neural Circuits
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI


Spalthoff C, Gerdes R, Kurtz R. Neuronal representation of visual motion and orientation in the fly medulla. Frontiers in Neural Circuits. 2012;6:72.
Spalthoff, C., Gerdes, R., & Kurtz, R. (2012). Neuronal representation of visual motion and orientation in the fly medulla. Frontiers in Neural Circuits, 6, 72. doi:10.3389/fncir.2012.00072
Spalthoff, Christian, Gerdes, Ralf, and Kurtz, Rafael. 2012. “Neuronal representation of visual motion and orientation in the fly medulla”. Frontiers in Neural Circuits 6: 72.
Spalthoff, C., Gerdes, R., and Kurtz, R. (2012). Neuronal representation of visual motion and orientation in the fly medulla. Frontiers in Neural Circuits 6, 72.
Spalthoff, C., Gerdes, R., & Kurtz, R., 2012. Neuronal representation of visual motion and orientation in the fly medulla. Frontiers in Neural Circuits, 6, p 72.
C. Spalthoff, R. Gerdes, and R. Kurtz, “Neuronal representation of visual motion and orientation in the fly medulla”, Frontiers in Neural Circuits, vol. 6, 2012, pp. 72.
Spalthoff, C., Gerdes, R., Kurtz, R.: Neuronal representation of visual motion and orientation in the fly medulla. Frontiers in Neural Circuits. 6, 72 (2012).
Spalthoff, Christian, Gerdes, Ralf, and Kurtz, Rafael. “Neuronal representation of visual motion and orientation in the fly medulla”. Frontiers in Neural Circuits 6 (2012): 72.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

From the Eye to the Brain: Development of the Drosophila Visual System.
Nériec N, Desplan C., Curr Top Dev Biol 116(), 2016
PMID: 26970623
Insect vision: emergence of pattern recognition from coarse encoding.
Wystrach A, Dewar AD, Graham P., Curr Biol 24(2), 2014
PMID: 24456981
Scene perception and the visual control of travel direction in navigating wood ants.
Collett TS, Lent DD, Graham P., Philos Trans R Soc Lond B Biol Sci 369(1636), 2014
PMID: 24395962
Behaviorally related neural plasticity in the arthropod optic lobes.
Berón de Astrada M, Bengochea M, Sztarker J, Delorenzi A, Tomsic D., Curr Biol 23(15), 2013
PMID: 23831291
Enhancement of prominent texture cues in fly optic flow processing.
Kurtz R., Front Neural Circuits 6(), 2012
PMID: 23112763

59 References

Daten bereitgestellt von Europe PubMed Central.

Inverse Batschelet distributions for circular data.
Jones MC, Pewsey A., Biometrics 68(1), 2011
PMID: 22443354
Principles of visual motion detection.
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948
Seeing things in motion: models, circuits, and mechanisms.
Borst A, Euler T., Neuron 71(6), 2011
PMID: 21943597
Fly motion vision.
Borst A, Haag J, Reiff DF., Annu. Rev. Neurosci. 33(), 2010
PMID: 20225934
Defining the computational structure of the motion detector in Drosophila.
Clark DA, Bursztyn L, Horowitz MA, Schnitzer MJ, Clandinin TR., Neuron 70(6), 2011
PMID: 21689602
Neural encoding of behaviourally relevant visual-motion information in the fly.
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
Internal structure of the fly elementary motion detector.
Eichner H, Joesch M, Schnell B, Reiff DF, Borst A., Neuron 70(6), 2011
PMID: 21689601
Neural mechanisms of orientation selectivity in the visual cortex.
Ferster D, Miller KD., Annu. Rev. Neurosci. 23(), 2000
PMID: 10845071
The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure
Fischbach K., Dittrich A.., 1989
Ca2+ imaging of identifiable neurons labeled by electroporation in insect brains.
Fujiwara T, Kazawa T, Haupt SS, Kanzaki R., Neuroreport 20(12), 2009
PMID: 19550361

Gal O.., 2003
The functional organization of male-specific visual neurons in flies.
Gilbert C, Strausfeld NJ., J. Comp. Physiol. A 169(4), 1991
PMID: 1723431
Systemtheoretische analyse der zeit, reihenfolgen und vorzeichenauswertung bei der bewegungsperzeption des russelkafers chlorophanus
Hassenstein B., Reichardt W.., 1956
Motion sensitive interneurons in the optomotor system of the fly: II. The horizontal cells: receptive field organization and response characteristics
Hausen K.., 1982
Fluorescence changes of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in vitro.
Hendel T, Mank M, Schnell B, Griesbeck O, Borst A, Reiff DF., J. Neurosci. 28(29), 2008
PMID: 18632944
Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora
Hengstenberg R.., 1982
Circuits that build visual cortical receptive fields.
Hirsch JA, Martinez LM., Trends Neurosci. 29(1), 2005
PMID: 16309753
ON and OFF pathways in Drosophila motion vision.
Joesch M, Schnell B, Raghu SV, Reiff DF, Borst A., Nature 468(7321), 2010
PMID: 21068841
Transfer of graded potentials at the photoreceptor-interneuron synapse.
Juusola M, Uusitalo RO, Weckstrom M., J. Gen. Physiol. 105(1), 1995
PMID: 7537323
Application of multiline two-photon microscopy to functional in vivo imaging.
Kurtz R, Fricke M, Kalb J, Tinnefeld P, Sauer M., J. Neurosci. Methods 151(2), 2006
PMID: 16442636
The color-vision circuit in the medulla of Drosophila.
Morante J, Desplan C., Curr. Biol. 18(8), 2008
PMID: 18403201
Insect detection of small targets moving in visual clutter.
Nordstrom K, Barnett PD, O'Carroll DC., PLoS Biol. 4(3), 2006
PMID: 16448249
Feature detection and the hypercomplex property in insects.
Nordstrom K, O'Carroll DC., Trends Neurosci. 32(7), 2009
PMID: 19541374
Feature-detecting neurons in dragonflies
O'Carroll D.., 1993
Directionally selective cells in the locust medulla.
Osorio D., J. Comp. Physiol. A 159(6), 1986
PMID: 3806440
Arrangement of optical axes and spatial resolution in the compound eye of the female blowfly Calliphora.
Petrowitz R, Dahmen H, Egelhaaf M, Krapp HG., J. Comp. Physiol. A 186(7-8), 2000
PMID: 11016789
Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila.
Reiff DF, Plett J, Mank M, Griesbeck O, Borst A., Nat. Neurosci. 13(8), 2010
PMID: 20622873
Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster.
Rister J, Pauls D, Schnell B, Ting CY, Lee CH, Sinakevitch I, Morante J, Strausfeld NJ, Ito K, Heisenberg M., Neuron 56(1), 2007
PMID: 17920022
Design principles of insect and vertebrate visual systems.
Sanes JR, Zipursky SL., Neuron 66(1), 2010
PMID: 20399726
Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila.
Schnell B, Raghu SV, Nern A, Borst A., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 198(5), 2012
PMID: 22411431
Properties of elementary movement detectors in the fly Calliphora erythrocephala
Schuling F., Mastebroek H., Bult R., Lenting B.., 1989
Dendritic computation of direction selectivity and gain control in visual interneurons.
Single S, Haag J, Borst A., J. Neurosci. 17(16), 1997
PMID: 9236213
Spatial processing of visual information in the movement-detecting pathway of the fly
Srinivasan M., Dvorak D.., 1980
Evidence for two distinct movement-detecting mechanisms in insect vision
Srinivasan M., Zhang S., Chandrashekara K.., 1993

Strausfeld N.., 1976
Vision in insects: pathways possibly underlying neural adaptation and lateral inhibition.
Strausfeld NJ, Campos-Ortega JA., Science 195(4281), 1977
PMID: 841315
Cholinergic circuits integrate neighboring visual signals in a Drosophila motion detection pathway.
Takemura SY, Karuppudurai T, Ting CY, Lu Z, Lee CH, Meinertzhagen IA., Curr. Biol. 21(24), 2011
PMID: 22137471
Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla.
Takemura SY, Lu Z, Meinertzhagen IA., J. Comp. Neurol. 509(5), 2008
PMID: 18537121
Characterisation of a blowfly male-specific neuron using behaviourally generated visual stimuli.
Trischler C, Boeddeker N, Egelhaaf M., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 193(5), 2007
PMID: 17333206
Direction selectivity in the retina: symmetry and asymmetry in structure and function.
Vaney DI, Sivyer B, Taylor WR., Nat. Rev. Neurosci. 13(3), 2012
PMID: 22314444
A model for the detection of moving targets in visual clutter inspired by insect physiology.
Wiederman SD, Shoemaker PA, O'Carroll DC., PLoS ONE 3(7), 2008
PMID: 18665213
Orientation-sensitive Neurons in the Brain of the Honey Bee (Apis mellifera).
MADDESS T, YANG E., J. Insect Physiol. 43(4), 1997
PMID: 12769894

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 23087615
PubMed | Europe PMC

Suchen in

Google Scholar