Octopaminergic modulation of contrast gain adaptation in fly visual motion-sensitive neurons

Rien D, Kern R, Kurtz R (2012)
European Journal of Neuroscience 36(8): 3030-3039.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.19 MB
Erscheinungsjahr
2012
Zeitschriftentitel
European Journal of Neuroscience
Band
36
Ausgabe
8
Seite(n)
3030-3039
ISSN
0953-816X
Page URI
https://pub.uni-bielefeld.de/record/2530854

Zitieren

Rien D, Kern R, Kurtz R. Octopaminergic modulation of contrast gain adaptation in fly visual motion-sensitive neurons. European Journal of Neuroscience. 2012;36(8):3030-3039.
Rien, D., Kern, R., & Kurtz, R. (2012). Octopaminergic modulation of contrast gain adaptation in fly visual motion-sensitive neurons. European Journal of Neuroscience, 36(8), 3030-3039. doi:10.1111/j.1460-9568.2012.08216.x
Rien, Diana, Kern, Roland, and Kurtz, Rafael. 2012. “Octopaminergic modulation of contrast gain adaptation in fly visual motion-sensitive neurons”. European Journal of Neuroscience 36 (8): 3030-3039.
Rien, D., Kern, R., and Kurtz, R. (2012). Octopaminergic modulation of contrast gain adaptation in fly visual motion-sensitive neurons. European Journal of Neuroscience 36, 3030-3039.
Rien, D., Kern, R., & Kurtz, R., 2012. Octopaminergic modulation of contrast gain adaptation in fly visual motion-sensitive neurons. European Journal of Neuroscience, 36(8), p 3030-3039.
D. Rien, R. Kern, and R. Kurtz, “Octopaminergic modulation of contrast gain adaptation in fly visual motion-sensitive neurons”, European Journal of Neuroscience, vol. 36, 2012, pp. 3030-3039.
Rien, D., Kern, R., Kurtz, R.: Octopaminergic modulation of contrast gain adaptation in fly visual motion-sensitive neurons. European Journal of Neuroscience. 36, 3030-3039 (2012).
Rien, Diana, Kern, Roland, and Kurtz, Rafael. “Octopaminergic modulation of contrast gain adaptation in fly visual motion-sensitive neurons”. European Journal of Neuroscience 36.8 (2012): 3030-3039.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:07Z
MD5 Prüfsumme
4d86cc22e038a426277f6027f676ed1b


10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Behavioral state modulates the ON visual motion pathway of Drosophila.
Strother JA, Wu ST, Rogers EM, Eliason JLM, Wong AM, Nern A, Reiser MB., Proc Natl Acad Sci U S A 115(1), 2018
PMID: 29255026
Effect of a thymol application on olfactory memory and gene expression levels in the brain of the honeybee Apis mellifera.
Bonnafé E, Drouard F, Hotier L, Carayon JL, Marty P, Treilhou M, Armengaud C., Environ Sci Pollut Res Int 22(11), 2015
PMID: 24590599
Temporal and spatial adaptation of transient responses to local features.
O'Carroll DC, Barnett PD, Nordström K., Front Neural Circuits 6(), 2012
PMID: 23087617
Octopamine neurons mediate flight-induced modulation of visual processing in Drosophila.
Suver MP, Mamiya A, Dickinson MH., Curr Biol 22(24), 2012
PMID: 23142045
Visual neuroscience: a moving story of neuromodulation.
Jayaraman V., Curr Biol 22(24), 2012
PMID: 23257195
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913

52 References

Daten bereitgestellt von Europe PubMed Central.

Functional specialization of mouse higher visual cortical areas.
Andermann ML, Kerlin AM, Roumis DK, Glickfeld LL, Reid RC., Neuron 72(6), 2011
PMID: 22196337
Identified octopaminergic neurons provide an arousal mechanism in the locust brain.
Bacon JP, Thompson KS, Stern M., J. Neurophysiol. 74(6), 1995
PMID: 8747228
Fly motion vision.
Borst A, Haag J, Reiff DF., Annu. Rev. Neurosci. 33(), 2010
PMID: 20225934
A map of octopaminergic neurons in the Drosophila brain.
Busch S, Selcho M, Ito K, Tanimoto H., J. Comp. Neurol. 513(6), 2009
PMID: 19235225
Walking modulates speed sensitivity in Drosophila motion vision.
Chiappe ME, Seelig JD, Reiser MB, Jayaraman V., Curr. Biol. 20(16), 2010
PMID: 20655222
Modulation of the light response by cAMP in Drosophila photoreceptors.
Chyb S, Hevers W, Forte M, Wolfgang WJ, Selinger Z, Hardie RC., J. Neurosci. 19(20), 1999
PMID: 10516299
Alpha 2-adrenoceptors as a target for formamidine pesticides: in vitro and in vivo studies in mice.
Costa LG, Olibet G, Murphy SD., Toxicol. Appl. Pharmacol. 93(2), 1988
PMID: 2833825
Functional properties of the H1-neurone in the third optic ganglion of the blowfly, Phaenicia
Eckert, J. Comp. Physiol. A. 135(), 1980
Transient and steady-state response properties of movement detectors.
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651
Neural encoding of behaviourally relevant visual-motion information in the fly.
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
The modulatory effects of serotonin and octopamine in the visual system of the honey bee (Apis mellifera L.)
Erber, J. Comp. Physiol. A. 176(), 1995
Action of formamidine pesticides on octopamine receptors.
Evans PD, Gee JD., Nature 287(5777), 1980
PMID: 6251379

Franceschini, 1975
Contrast gain reduction in fly motion adaptation.
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367
Motion sensitive interneurons in the optomotor system of the fly: II. The horizontal cells: receptive field organization and response characteristics
Hausen, Biol. Cybern. 46(), 1982

Hausen, 1984
Binocular integration of visual information: a model study on naturalistic optic flow processing.
Hennig P, Kern R, Egelhaaf M., Front Neural Circuits 5(), 2011
PMID: 21519385
In vitro and in vivo effects of formamidines in locust (Locusta migratoria migratorioides).
Hiripi L, Nagy L, Hollingworth RM., Acta. Biol. Hung. 50(1-3), 1999
PMID: 10574431
Formamidine pesticides: octopamine-like actions in a firefly.
Hollingworth RM, Murdock LL., Science 208(4439), 1980
PMID: 17731571
Synaptic interactions increase optic flow specificity.
Horstmann W, Egelhaaf M, Warzecha AK., Eur. J. Neurosci. 12(6), 2000
PMID: 10886355
Flight activity alters velocity tuning of fly motion-sensitive neurons.
Jung SN, Borst A, Haag J., J. Neurosci. 31(25), 2011
PMID: 21697373
Adaptation of velocity encoding in synaptically coupled neurons in the fly visual system.
Kalb J, Egelhaaf M, Kurtz R., J. Neurosci. 28(37), 2008
PMID: 18784299
Robustness of the tuning of fly visual interneurons to rotatory optic flow.
Karmeier K, Krapp HG, Egelhaaf M., J. Neurophysiol. 90(3), 2003
PMID: 12736239
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507

Kurtz, 2011
Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons.
Kurtz R, Beckers U, Hundsdorfer B, Egelhaaf M., Eur. J. Neurosci. 30(4), 2009
PMID: 19674090
Adaptation accentuates responses of fly motion-sensitive visual neurons to sudden stimulus changes.
Kurtz R, Egelhaaf M, Meyer HG, Kern R., Proc. Biol. Sci. 276(1673), 2009
PMID: 19656791
State-dependent performance of optic-flow processing interneurons.
Longden KD, Krapp HG., J. Neurophysiol. 102(6), 2009
PMID: 19812292
Sensory neurophysiology: motion vision during motor action.
Longden KD, Krapp HG., Curr. Biol. 21(17), 2011
PMID: 21920293
Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency
Maddess, Proc. Biol. Sci. 225(), 1985
Active flight increases the gain of visual motion processing in Drosophila.
Maimon G, Straw AD, Dickinson MH., Nat. Neurosci. 13(3), 2010
PMID: 20154683
Behavioral state modulates the activity of brainstem sensorimotor neurons.
McArthur KL, Dickman JD., J. Neurosci. 31(46), 2011
PMID: 22090497
Energy limitation as a selective pressure on the evolution of sensory systems.
Niven JE, Laughlin SB., J. Exp. Biol. 211(Pt 11), 2008
PMID: 18490395
The motion after-effect: local and global contributions to contrast sensitivity.
Nordstrom K, O'Carroll DC., Proc. Biol. Sci. 276(1662), 2009
PMID: 19324825
Rapid contrast gain reduction following motion adaptation.
Nordstrom K, Moyer de Miguel I, O'Carroll DC., J. Exp. Biol. 214(Pt 23), 2011
PMID: 22071192
Tyramine and octopamine: ruling behavior and metabolism.
Roeder T., Annu. Rev. Entomol. 50(), 2005
PMID: 15355245
Variability of blowfly head optomotor responses.
Rosner R, Egelhaaf M, Grewe J, Warzecha AK., J. Exp. Biol. 212(Pt 8), 2009
PMID: 19329750
Behavioural state affects motion-sensitive neurones in the fly visual system.
Rosner R, Egelhaaf M, Warzecha AK., J. Exp. Biol. 213(2), 2010
PMID: 20038668
Comparison of octopamine-like immunoreactivity in the brains of the fruit fly and blow fly.
Sinakevitch I, Strausfeld NJ., J. Comp. Neurol. 494(3), 2006
PMID: 16320256
Flying insects: model systems in exercise physiology.
Wegener G., Experientia 52(5), 1996
PMID: 8641375
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22775326
PubMed | Europe PMC

Suchen in

Google Scholar