Structure and Bonding Nature of the Strained Lewis Acid 3-Methyl-1-boraadamantane: A Case Study Employing a New Data-Analysis Procedure in Gas Electron Diffraction

Vishnevskiy Y, Abaev MA, Rykov AN, Gurskii ME, Belyakov PA, Erdyakov SY, Bubnov YN, Mitzel NW (2012)
Chemistry 18(34): 10585-10594.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ;
Abstract / Bemerkung
Base-free 3-methyl-1-boraadamantane was synthesized by starting from its known THF adduct, transforming it to a butylate-complex with n-butyllithium, cleaving the cage with acetyl chloride to give 3-n-butyl-5-methyl-7-methylene-3-borabicyclo[3.3.1]nonane and closing the cage again by reacting the latter with dicyclohexylborane. The identity of 3-methyl-1-boraadamantane was proven by 1H, 11B and 13C NMR spectroscopy and elemental analysis. The experimental equilibrium structure of the free 3-methyl-1-boraadamantane molecules has been determined at 100 degrees C by using gas-phase electron diffraction. For this structure determination, an improved method for data analysis has been introduced and tested: the structural refinement versus gas-phase electron diffraction data (in terms of Cartesian coordinates) with a set of quantum-chemically derived regularization constraints for the complete structure under optimization of a regularization constant, which maximizes the contribution of experimental data while retaining a stable refinement. The detailed analysis of parameter errors shows that the new approach allows obtaining more reliable results. The most important structural parameters are: re(B-C)av=1.556(5) angstrom, ${\angle }$e(C-B-C)av=116.5(2)degrees. The configuration of the boron atom is pyramidal with ${\sum \angle }$(C-B-C)=349.4(4)degrees. The nature of bonding was analyzed further by applying the natural bond orbital (NBO) and atoms in molecules (AIM) approaches. The experimentally observed shortening of the B?C bonds and elongation of the adjacent C?C bonds can be explained by the s(C-C)?p(B) hyperconjugation model. Both NBO and AIM analyses predict that the B?C bonds are significantly bent in the direction out of the cage.
Erscheinungsjahr
Zeitschriftentitel
Chemistry
Band
18
Ausgabe
34
Seite(n)
10585-10594
ISSN
PUB-ID

Zitieren

Vishnevskiy Y, Abaev MA, Rykov AN, et al. Structure and Bonding Nature of the Strained Lewis Acid 3-Methyl-1-boraadamantane: A Case Study Employing a New Data-Analysis Procedure in Gas Electron Diffraction. Chemistry. 2012;18(34):10585-10594.
Vishnevskiy, Y., Abaev, M. A., Rykov, A. N., Gurskii, M. E., Belyakov, P. A., Erdyakov, S. Y., Bubnov, Y. N., et al. (2012). Structure and Bonding Nature of the Strained Lewis Acid 3-Methyl-1-boraadamantane: A Case Study Employing a New Data-Analysis Procedure in Gas Electron Diffraction. Chemistry, 18(34), 10585-10594. doi:10.1002/chem.201200264
Vishnevskiy, Y., Abaev, M. A., Rykov, A. N., Gurskii, M. E., Belyakov, P. A., Erdyakov, S. Y., Bubnov, Y. N., and Mitzel, N. W. (2012). Structure and Bonding Nature of the Strained Lewis Acid 3-Methyl-1-boraadamantane: A Case Study Employing a New Data-Analysis Procedure in Gas Electron Diffraction. Chemistry 18, 10585-10594.
Vishnevskiy, Y., et al., 2012. Structure and Bonding Nature of the Strained Lewis Acid 3-Methyl-1-boraadamantane: A Case Study Employing a New Data-Analysis Procedure in Gas Electron Diffraction. Chemistry, 18(34), p 10585-10594.
Y. Vishnevskiy, et al., “Structure and Bonding Nature of the Strained Lewis Acid 3-Methyl-1-boraadamantane: A Case Study Employing a New Data-Analysis Procedure in Gas Electron Diffraction”, Chemistry, vol. 18, 2012, pp. 10585-10594.
Vishnevskiy, Y., Abaev, M.A., Rykov, A.N., Gurskii, M.E., Belyakov, P.A., Erdyakov, S.Y., Bubnov, Y.N., Mitzel, N.W.: Structure and Bonding Nature of the Strained Lewis Acid 3-Methyl-1-boraadamantane: A Case Study Employing a New Data-Analysis Procedure in Gas Electron Diffraction. Chemistry. 18, 10585-10594 (2012).
Vishnevskiy, Yury, Abaev, Maxim A., Rykov, Anatolii N., Gurskii, Mikhail E., Belyakov, Pavel A., Erdyakov, Sergey Yu, Bubnov, Yuri N., and Mitzel, Norbert W. “Structure and Bonding Nature of the Strained Lewis Acid 3-Methyl-1-boraadamantane: A Case Study Employing a New Data-Analysis Procedure in Gas Electron Diffraction”. Chemistry 18.34 (2012): 10585-10594.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The perfluorinated alcohols c-C6F11OH, c-C6F10-1,1-(OH)2 and c-C6F10-1-(CF3)OH.
Schaab J, Schwab M, Kratzert D, Schwabedissen J, Stammler HG, Mitzel NW, Krossing I., Chem Commun (Camb) 54(67), 2018
PMID: 30033461
Gas-phase structure of 2,2,2-trichloroethyl chloroformate studied by electron diffraction and quantum-chemical calculations.
Gil DM, Tuttolomondo ME, Blomeyer S, Reuter CG, Mitzel NW, Altabef AB., Phys Chem Chem Phys 18(1), 2016
PMID: 26617390
Gas phase equilibrium structure of histamine.
Tikhonov DS, Rykov AN, Grikina OE, Khaikin LS., Phys Chem Chem Phys 18(8), 2016
PMID: 26845147

58 References

Daten bereitgestellt von Europe PubMed Central.


Bubnov, 1996

Bubnov, 2008

Klimkowski, J. Am. Chem. Soc. 104(), 1982

Schultz, Struct. Chem. 9(), 1998

MacKenzie, Struct. Chem. 11(), 2000
Molecular structure of 1,5-diazabicyclo[3.1.0]hexane as determined by gas electron diffraction and quantum-chemical calculations.
Vishnevskiy YV, Vogt N, Vogt J, Rykov AN, Kuznetsov VV, Makhova NN, Vilkov LV., J Phys Chem A 112(23), 2008
PMID: 18491847

Blake, J. Phys. Chem. 100(), 1996

Tychonoff, Dokl. Akad. Nauk SSSR 39(), 1943

Tychonoff, 1977

Erdyakov, Mend. Comm. 17(), 2007
Design of bicyclic and cage boron compounds based on allylboration of acetylenes with allyldichloroboranes.
Erdyakov SY, Ignatenko AV, Potapova TV, Lyssenko KA, Gurskii ME, Bubnov YN., Org. Lett. 11(13), 2009
PMID: 19505127

Mikhailov, J. Organomet. Chem. 201(), 1980

Bubnov, Tetrahedron 42(), 1986

Pelter, 1988

Wrackmeyer, Z. Naturforsch. 63b(), 2008

Mikhailov, Zh. Obshch. Khim. 41(), 1971

Thompson, Inorg. Chem. 4(), 1965

Wrackmeyer, 1988

Nöth, Chem. Ber. 99(), 1966

Kramer, J. Organomet. Chem. 73(), 1974

Taniguchi, J. Am. Chem. Soc. 98(), 1976

Ditchfield, Mol. Phys. 27(), 1974

Wrackmeyer, Z. Naturforsch. 60b(), 2005

AUTHOR UNKNOWN, 0

Bartell, J. Chem. Phys. 42(), 1965

Bartell, 1975

Mitzel, Dalton Trans. 3650(), 2003

Vishnevskii, Russ. J. Phys. Chem. 79(), 2005
Why are some (CH)4X6 and (CH2)6X4 polyheteroadamantanes so stable?
Wang Y, Wu JI, Li Q, Schleyer Pv., Org. Lett. 12(6), 2010
PMID: 20180512

Laube, Acta Crystallogr. Sect. B 51(), 1995

Bader, 1990

AUTHOR UNKNOWN, 0

Becke, J. Chem. Phys. 98(), 1993

Cohen, Mol. Phys. 99(), 2001
Generalized Gradient Approximation Made Simple.
Perdew JP, Burke K, Ernzerhof M., Phys. Rev. Lett. 77(18), 1996
PMID: 10062328

Møller, Phys. Rev. 46(), 1934

AUTHOR UNKNOWN, 0

Sipachev, J. Mol. Struct. 121(), 1985

Sipachev, Struct. Chem. 11(), 2000

Sipachev, J. Mol. Struct. 567-568(), 2001

Sipachev, J. Mol. Struct. 693(), 2004

Foster, J. Am. Chem. Soc. 102(), 1980

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Gaussian-4 theory.
Curtiss LA, Redfern PC, Raghavachari K., J Chem Phys 126(8), 2007
PMID: 17343441

Vold, J. Chem. Phys. 48(), 1968

Mlynárik, Prog. Nucl. Magn. Reson. Spectrosc. 18(), 1986

Vishnevskiy, J. Mol. Struct. 833(), 2007

Vishnevskiy, J. Mol. Struct. 871(), 2007

Bartell, J. Chem. Phys. 42(), 1965

Foord, J. Mol. Struct. 24(), 1975

Vishnevskii, Russ. Chem. Bull. 54(), 2005

Hargittai, J. Chem. Soc. D (), 1971

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 22791415
PubMed | Europe PMC

Suchen in

Google Scholar