Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light-dark transitions

Jardine K, Barron-Gafford GA, Norman JP, Abrell L, Monson RK, Meyers KT, Pavao-Zuckerman M, Dontsova K, Kleist E, Werner C, Huxman TE (2012)
Photosynthesis Research 113(1-3): 321-333.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Jardine, K.; Barron-Gafford, G. A.; Norman, J. P.; Abrell, L.; Monson, R. K.; Meyers, K. T.; Pavao-Zuckerman, M.; Dontsova, K.; Kleist, E.; Werner, ChristianeUniBi ; Huxman, T. E.
Abstract / Bemerkung
Green leaf volatiles (GLVs) are a diverse group of fatty acid-derived compounds emitted by all plants and are involved in a wide variety of developmental and stress-related biological functions. Recently, GLV emission bursts from leaves were reported following light-dark transitions and hypothesized to be related to the stress response while acetaldehyde bursts were hypothesized to be due to the 'pyruvate overflow' mechanism. In this study, branch emissions of GLVs and a group of oxygenated metabolites (acetaldehyde, ethanol, acetic acid, and acetone) derived from the pyruvate dehydrogenase (PDH) bypass pathway were quantified from mesquite plants following light-dark transitions using a coupled GC-MS, PTR-MS, and photosynthesis system. Within the first minute after darkening following a light period, large emission bursts of both C-5 and C-6 GLVs dominated by (Z)-3-hexen-1-yl acetate together with the PDH bypass metabolites are reported for the first time. We found that branches exposed to CO2-free air lacked significant GLV and PDH bypass bursts while O-2-free atmospheres eliminated the GLV burst but stimulated the PDH bypass burst. A positive relationship was observed between photosynthetic activity prior to darkening and the magnitude of the GLV and PDH bursts. Photosynthesis under (CO2)-C-13 resulted in bursts with extensive labeling of acetaldehyde, ethanol, and the acetate but not the C-6-alcohol moiety of (Z)-3-hexen-1-yl acetate. Our observations are consistent with (1) the "pyruvate overflow" mechanism with a fast turnover time (< 1 h) as part of the PDH bypass pathway, which may contribute to the acetyl-CoA used for the acetate moiety of (Z)-3-hexen-1-yl acetate, and (2) a pool of fatty acids with a slow turnover time (> 3 h) responsible for the C-6 alcohol moiety of (Z)-3-hexen-1-yl acetate via the 13-lipoxygenase pathway. We conclude that our non-invasive method may provide a new valuable in vivo tool for studies of acetyl-CoA and fatty acid metabolism in plants at a variety of spatial scales.
Stichworte
Photosynthesis; Pyruvate overflow; transitions; Light-dark; Green leaf volatiles; Pyruvate dehydrogenase bypass
Erscheinungsjahr
2012
Zeitschriftentitel
Photosynthesis Research
Band
113
Ausgabe
1-3
Seite(n)
321-333
ISSN
0166-8595
eISSN
1573-5079
Page URI
https://pub.uni-bielefeld.de/record/2530329

Zitieren

Jardine K, Barron-Gafford GA, Norman JP, et al. Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light-dark transitions. Photosynthesis Research. 2012;113(1-3):321-333.
Jardine, K., Barron-Gafford, G. A., Norman, J. P., Abrell, L., Monson, R. K., Meyers, K. T., Pavao-Zuckerman, M., et al. (2012). Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light-dark transitions. Photosynthesis Research, 113(1-3), 321-333. doi:10.1007/s11120-012-9746-5
Jardine, K., Barron-Gafford, G. A., Norman, J. P., Abrell, L., Monson, R. K., Meyers, K. T., Pavao-Zuckerman, M., et al. 2012. “Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light-dark transitions”. Photosynthesis Research 113 (1-3): 321-333.
Jardine, K., Barron-Gafford, G. A., Norman, J. P., Abrell, L., Monson, R. K., Meyers, K. T., Pavao-Zuckerman, M., Dontsova, K., Kleist, E., Werner, C., et al. (2012). Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light-dark transitions. Photosynthesis Research 113, 321-333.
Jardine, K., et al., 2012. Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light-dark transitions. Photosynthesis Research, 113(1-3), p 321-333.
K. Jardine, et al., “Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light-dark transitions”, Photosynthesis Research, vol. 113, 2012, pp. 321-333.
Jardine, K., Barron-Gafford, G.A., Norman, J.P., Abrell, L., Monson, R.K., Meyers, K.T., Pavao-Zuckerman, M., Dontsova, K., Kleist, E., Werner, C., Huxman, T.E.: Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light-dark transitions. Photosynthesis Research. 113, 321-333 (2012).
Jardine, K., Barron-Gafford, G. A., Norman, J. P., Abrell, L., Monson, R. K., Meyers, K. T., Pavao-Zuckerman, M., Dontsova, K., Kleist, E., Werner, Christiane, and Huxman, T. E. “Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light-dark transitions”. Photosynthesis Research 113.1-3 (2012): 321-333.

10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Effects of heat and drought stress on post-illumination bursts of volatile organic compounds in isoprene-emitting and non-emitting poplar.
Jud W, Vanzo E, Li Z, Ghirardo A, Zimmer I, Sharkey TD, Hansel A, Schnitzler JP., Plant Cell Environ 39(6), 2016
PMID: 26390316
Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest.
Jardine KJ, Chambers JQ, Holm J, Jardine AB, Fontes CG, Zorzanelli RF, Meyers KT, de Souza VF, Garcia S, Gimenez BO, Piva LR, Higuchi N, Artaxo P, Martin S, Manzi AO., Plants (Basel) 4(3), 2015
PMID: 27135346
Phytogenic biosynthesis and emission of methyl acetate.
Jardine K, Wegener F, Abrell L, van Haren J, Werner C., Plant Cell Environ 37(2), 2014
PMID: 23862653
Plant volatiles in extreme terrestrial and marine environments.
Rinnan R, Steinke M, McGenity T, Loreto F., Plant Cell Environ 37(8), 2014
PMID: 24601952
Bidirectional exchange of biogenic volatiles with vegetation: emission sources, reactions, breakdown and deposition.
Niinemets Ü, Fares S, Harley P, Jardine KJ., Plant Cell Environ 37(8), 2014
PMID: 24635661
The investment in scent: time-resolved metabolic processes in developing volatile-producing Nigella sativa L. seeds.
Xue W, Batushansky A, Toubiana D, Botnick I, Szymanski J, Khozin-Goldberg I, Nikoloski Z, Lewinsohn E, Fait A., PLoS One 8(9), 2013
PMID: 24019893

53 References

Daten bereitgestellt von Europe PubMed Central.

Lipoxygenases - Structure and reaction mechanism.
Andreou A, Feussner I., Phytochemistry 70(13-14), 2009
PMID: 19767040

PJP, Phytochemistry 13(12), 1974
Understanding in vivo carbon precursor supply for fatty acid synthesis in leaf tissue.
Bao X, Focke M, Pollard M, Ohlrogge J., Plant J. 22(1), 2000
PMID: 10792819

G, Glob Chang Biol 18(), 2012

J, Plant, Cell Environ 28(10), 2005
Detection of plant volatiles after leaf wounding and darkening by proton transfer reaction "time-of-flight" mass spectrometry (PTR-TOF).
Brilli F, Ruuskanen TM, Schnitzhofer R, Muller M, Breitenlechner M, Bittner V, Wohlfahrt G, Loreto F, Hansel A., PLoS ONE 6(5), 2011
PMID: 21637822
Genetic engineering of plant lipids.
Broun P, Gettner S, Somerville C., Annu. Rev. Nutr. 19(), 1999
PMID: 10448522

WC, J Biomed Sci 10(6), 2003
Distinct roles of jasmonates and aldehydes in plant-defense responses.
Chehab EW, Kaspi R, Savchenko T, Rowe H, Negre-Zakharov F, Kliebenstein D, Dehesh K., PLoS ONE 3(4), 2008
PMID: 18382679

W, Proc ANAS (Biol Sci) 66(5–6), 2010
13C-labelling patterns of green leaf volatiles indicating different dynamics of precursors in Brassica leaves.
Connor EC, Rott AS, Zeder M, Juttner F, Dorn S., Phytochemistry 69(6), 2008
PMID: 18325549

JA, Environ Sci Technol 34(12), 2000
New bioactive oxylipins formed by non-enzymatic free-radical-catalyzed pathways: the phytoprostanes.
Durand T, Bultel-Ponce V, Guy A, Berger S, Mueller MJ, Galano JM., Lipids 44(10), 2009
PMID: 19789901
Airborne signals prime plants against insect herbivore attack.
Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH., Proc. Natl. Acad. Sci. U.S.A. 101(6), 2004
PMID: 14749516

R, J Geophys Res-Atmos 104(D13), 1999

R, Atmos Environ 35(22), 2001
Reactive electrophile species.
Farmer EE, Davoine C., Curr. Opin. Plant Biol. 10(4), 2007
PMID: 17646124

C, Biotechnol Agron Soc Environ 14(3), 2010
Transient release of oxygenated volatile organic compounds during light-dark transitions in Grey poplar leaves.
Graus M, Schnitzler JP, Hansel A, Cojocariu C, Rennenberg H, Wisthaler A, Kreuzwieser J., Plant Physiol. 135(4), 2004
PMID: 15299129

A, J Geophys Res-Atmos 100(D5), 1995

PL, Plant Cell Physiol 9(3), 1968

A, Nippon Nogeikagaku Kaishi-J Jpn Soc Biosci Biotechnol Agrochem 67(10), 1993

AC, J Atmos Chem 45(2), 2003
Multiple stress factors and the emission of plant VOCs.
Holopainen JK, Gershenzon J., Trends Plant Sci. 15(3), 2010
PMID: 20144557
Leaf volatile emissions of Betula pendula during autumn coloration and leaf fall.
Holopainen JK, Heijari J, Oksanen E, Alessio GA., J. Chem. Ecol. 36(10), 2010
PMID: 20838885

R, J Geophys Res-Atmos 105(D16), 2000
Release of lipoxygenase products and monoterpenes by tomato plants as an indicator of Botrytis cinerea-induced stress.
Jansen RM, Miebach M, Kleist E, van Henten EJ, Wildt J., Plant Biol (Stuttg) 11(6), 2009
PMID: 19796363
Gas phase measurements of pyruvic acid and its volatile metabolites.
Jardine KJ, Sommer ED, Saleska SR, Huxman TE, Harley PC, Abrell L., Environ. Sci. Technol. 44(7), 2010
PMID: 20210357

KJ, Atmos Meas Tech 3(6), 2010
Gas phase measurements of pyruvic acid and its volatile metabolites.
Jardine KJ, Sommer ED, Saleska SR, Huxman TE, Harley PC, Abrell L., Environ. Sci. Technol. 44(7), 2010
PMID: 20210357

E, Int J Mass Spectrom 291(1–2), 2010

T, Plant, Cell Environ 25(9), 2002
Hydroperoxidase activity of lipoxygenase: hydrogen peroxide-dependent oxidation of xenobiotics.
Kulkarni AP, Cook DC., Biochem. Biophys. Res. Commun. 155(2), 1988
PMID: 3138991
Abiotic stresses and induced BVOCs.
Loreto F, Schnitzler JP., Trends Plant Sci. 15(3), 2010
PMID: 20133178
Early activation of lipoxygenase in lentil (Lens culinaris) root protoplasts by oxidative stress induces programmed cell death.
MacCarrone M, Van Zadelhoff G, Veldink GA, Vliegenthart JF, Finazzi-Agro A., Eur. J. Biochem. 267(16), 2000
PMID: 10931190
The ethanolic fermentation pathway supports respiration and lipid biosynthesis in tobacco pollen.
Mellema S, Eichenberger W, Rawyler A, Suter M, Tadege M, Kuhlemeier C., Plant J. 30(3), 2002
PMID: 12000680
Nonenzymatic oxidation of trienoic fatty acids contributes to reactive oxygen species management in Arabidopsis.
Mene-Saffrane L, Dubugnon L, Chetelat A, Stolz S, Gouhier-Darimont C, Farmer EE., J. Biol. Chem. 284(3), 2008
PMID: 18996838

KH, Plant Growth Regul 46(3), 2005
Photolysis of "purple" lipoxygenase: implications for the structure of the chromophore.
Nelson MJ, Chase DB, Seitz SP., Biochemistry 34(18), 1995
PMID: 7742320
Design of New Plant Products: Engineering of Fatty Acid Metabolism.
Ohlrogge JB., Plant Physiol. 104(3), 1994
PMID: 12232128
Acetyl-CoA--Life at the metabolic nexus
Oliver DavidJ, Nikolau BasilJ, Wurtele EveSyrkin., Plant Sci. 176(5), 2009
PMID: IND44179775
Oxygenation of unsaturated fatty acids by soybean lipoxygenase.
Smith WL, Lands WE., J. Biol. Chem. 247(4), 1972
PMID: 5062239
Aerobic fermentation during tobacco pollen development.
Tadege M, Kuhlemeier C., Plant Mol. Biol. 35(3), 1997
PMID: 9349258

CG, Bot Gaz 151(1), 1990
The roles of aldehyde dehydrogenases (ALDHs) in the PDH bypass of Arabidopsis.
Wei Y, Lin M, Oliver DJ, Schnable PS., BMC Biochem. 10(), 2009
PMID: 19320993
ABA treatment of germinating maize seeds induces VP1 gene expression and selective promoter‐associated histone acetylation
Zhang L, Qiu Z, Hu Y, Yang F, Yan S, Zhao L, Li B, He S, Huang M, Li J, Li L., Physiol Plant 143(3), 2011
PMID: IND44655325
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22711426
PubMed | Europe PMC

Suchen in

Google Scholar