Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light-dark transitions

Jardine K, Barron-Gafford GA, Norman JP, Abrell L, Monson RK, Meyers KT, Pavao-Zuckerman M, Dontsova K, Kleist E, Werner C, Huxman TE (2012)
Photosynthesis Research 113(1-3): 321-333.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
; ; ; ; ; ; ; ; ; ;
Abstract / Bemerkung
Green leaf volatiles (GLVs) are a diverse group of fatty acid-derived compounds emitted by all plants and are involved in a wide variety of developmental and stress-related biological functions. Recently, GLV emission bursts from leaves were reported following light-dark transitions and hypothesized to be related to the stress response while acetaldehyde bursts were hypothesized to be due to the 'pyruvate overflow' mechanism. In this study, branch emissions of GLVs and a group of oxygenated metabolites (acetaldehyde, ethanol, acetic acid, and acetone) derived from the pyruvate dehydrogenase (PDH) bypass pathway were quantified from mesquite plants following light-dark transitions using a coupled GC-MS, PTR-MS, and photosynthesis system. Within the first minute after darkening following a light period, large emission bursts of both C-5 and C-6 GLVs dominated by (Z)-3-hexen-1-yl acetate together with the PDH bypass metabolites are reported for the first time. We found that branches exposed to CO2-free air lacked significant GLV and PDH bypass bursts while O-2-free atmospheres eliminated the GLV burst but stimulated the PDH bypass burst. A positive relationship was observed between photosynthetic activity prior to darkening and the magnitude of the GLV and PDH bursts. Photosynthesis under (CO2)-C-13 resulted in bursts with extensive labeling of acetaldehyde, ethanol, and the acetate but not the C-6-alcohol moiety of (Z)-3-hexen-1-yl acetate. Our observations are consistent with (1) the "pyruvate overflow" mechanism with a fast turnover time (< 1 h) as part of the PDH bypass pathway, which may contribute to the acetyl-CoA used for the acetate moiety of (Z)-3-hexen-1-yl acetate, and (2) a pool of fatty acids with a slow turnover time (> 3 h) responsible for the C-6 alcohol moiety of (Z)-3-hexen-1-yl acetate via the 13-lipoxygenase pathway. We conclude that our non-invasive method may provide a new valuable in vivo tool for studies of acetyl-CoA and fatty acid metabolism in plants at a variety of spatial scales.
Stichworte
Photosynthesis; Pyruvate overflow; transitions; Light-dark; Green leaf volatiles; Pyruvate dehydrogenase bypass
Erscheinungsjahr
2012
Zeitschriftentitel
Photosynthesis Research
Band
113
Ausgabe
1-3
Seite(n)
321-333
ISSN
0166-8595
eISSN
1573-5079
Page URI
https://pub.uni-bielefeld.de/record/2530329

Zitieren

Jardine K, Barron-Gafford GA, Norman JP, et al. Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light-dark transitions. Photosynthesis Research. 2012;113(1-3):321-333.
Jardine, K., Barron-Gafford, G. A., Norman, J. P., Abrell, L., Monson, R. K., Meyers, K. T., Pavao-Zuckerman, M., et al. (2012). Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light-dark transitions. Photosynthesis Research, 113(1-3), 321-333. doi:10.1007/s11120-012-9746-5
Jardine, K., Barron-Gafford, G. A., Norman, J. P., Abrell, L., Monson, R. K., Meyers, K. T., Pavao-Zuckerman, M., Dontsova, K., Kleist, E., Werner, C., et al. (2012). Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light-dark transitions. Photosynthesis Research 113, 321-333.
Jardine, K., et al., 2012. Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light-dark transitions. Photosynthesis Research, 113(1-3), p 321-333.
K. Jardine, et al., “Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light-dark transitions”, Photosynthesis Research, vol. 113, 2012, pp. 321-333.
Jardine, K., Barron-Gafford, G.A., Norman, J.P., Abrell, L., Monson, R.K., Meyers, K.T., Pavao-Zuckerman, M., Dontsova, K., Kleist, E., Werner, C., Huxman, T.E.: Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light-dark transitions. Photosynthesis Research. 113, 321-333 (2012).
Jardine, K., Barron-Gafford, G. A., Norman, J. P., Abrell, L., Monson, R. K., Meyers, K. T., Pavao-Zuckerman, M., Dontsova, K., Kleist, E., Werner, Christiane, and Huxman, T. E. “Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light-dark transitions”. Photosynthesis Research 113.1-3 (2012): 321-333.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 22711426
PubMed | Europe PMC

Suchen in

Google Scholar