Infima of superharmonic functions

Alakhrass M, Hansen W (2012)
Arkiv för matematik 50(2): 231-235.

Zeitschriftenaufsatz | Veröffentlicht| Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor*in
Alakhrass, Mohammad; Hansen, WolfhardUniBi
Abstract / Bemerkung
Let Omega be a Greenian domain in a"e (d) , da parts per thousand yen2, or-more generally-let Omega be a connected -Brelot space satisfying axiom D, and let u be a numerical function on Omega, , which is locally bounded from below. A short proof yields the following result: The function u is the infimum of its superharmonic majorants if and only if each set {x:u(x)> t}, taa"e, differs from an analytic set only by a polar set and , whenever V is a relatively compact open set in Omega and xaV.
Erscheinungsjahr
2012
Zeitschriftentitel
Arkiv för matematik
Band
50
Ausgabe
2
Seite(n)
231-235
ISSN
0004-2080
Page URI
https://pub.uni-bielefeld.de/record/2530267

Zitieren

Alakhrass M, Hansen W. Infima of superharmonic functions. Arkiv för matematik. 2012;50(2):231-235.
Alakhrass, M., & Hansen, W. (2012). Infima of superharmonic functions. Arkiv för matematik, 50(2), 231-235. doi:10.1007/s11512-011-0159-z
Alakhrass, M., and Hansen, W. (2012). Infima of superharmonic functions. Arkiv för matematik 50, 231-235.
Alakhrass, M., & Hansen, W., 2012. Infima of superharmonic functions. Arkiv för matematik, 50(2), p 231-235.
M. Alakhrass and W. Hansen, “Infima of superharmonic functions”, Arkiv för matematik, vol. 50, 2012, pp. 231-235.
Alakhrass, M., Hansen, W.: Infima of superharmonic functions. Arkiv för matematik. 50, 231-235 (2012).
Alakhrass, Mohammad, and Hansen, Wolfhard. “Infima of superharmonic functions”. Arkiv för matematik 50.2 (2012): 231-235.