Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum

Heider S, Peters-Wendisch P, Wendisch VF (2012)
BMC Microbiology 12(1): 198.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
Background Corynebacterium glutamicum contains the glycosylated C50 carotenoid decaprenoxanthin as yellow pigment. Starting from isopentenyl pyrophosphate, which is generated in the non-mevalonate pathway, decaprenoxanthin is synthesized via the intermediates farnesyl pyrophosphate, geranylgeranyl pyrophosphate, lycopene and flavuxanthin. Results Here, we showed that the genes of the carotenoid gene cluster crtE-cg0722-crtBIYeYfEb are co-transcribed and characterized defined gene deletion mutants. Gene deletion analysis revealed that crtI, crtEb, and crtYeYf, respectively, code for the only phytoene desaturase, lycopene elongase, and carotenoid C45/C50 epsilon-cyclase, respectively. However, the genome of C. glutamicum also encodes a second carotenoid gene cluster comprising crtB2I2-1/2 shown to be co-transcribed, as well. Ectopic expression of crtB2 could compensate for the lack of phytoene synthase CrtB in C. glutamicum DeltacrtB, thus, C. glutamicum possesses two functional phytoene synthases, namely CrtB and CrtB2. Genetic evidence for a crtI2-1/2 encoded phytoene desaturase could not be obtained since plasmid-borne expression of crtI2-1/2 did not compensate for the lack of phytoene desaturase CrtI in C. glutamicum DeltacrtI. The potential of C. glutamicum to overproduce carotenoids was estimated with lycopene as example. Deletion of the gene crtEb prevented conversion of lycopene to decaprenoxanthin and entailed accumulation of lycopene to 0.03 +/- 0.01 mg/g cell dry weight (CDW). When the genes crtE, crtB and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were overexpressed in C. glutamicum DeltacrtEb intensely red-pigmented cells and an 80 fold increased lycopene content of 2.4 +/- 0.3 mg/g CDW were obtained. Conclusion C. glutamicum possesses a certain degree of redundancy in the biosynthesis of the C50 carotenoid decaprenoxanthin as it possesses two functional phytoene synthase genes. Already metabolic engineering of only the terminal reactions leading to lycopene resulted in considerable lycopene production indicating that C. glutamicum may serve as a potential host for carotenoid production.
Erscheinungsjahr
2012
Zeitschriftentitel
BMC Microbiology
Band
12
Ausgabe
1
Art.-Nr.
198
ISSN
1471-2180
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2524853

Zitieren

Heider S, Peters-Wendisch P, Wendisch VF. Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum. BMC Microbiology. 2012;12(1): 198.
Heider, S., Peters-Wendisch, P., & Wendisch, V. F. (2012). Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum. BMC Microbiology, 12(1), 198. doi:10.1186/1471-2180-12-198
Heider, Sabine, Peters-Wendisch, Petra, and Wendisch, Volker F. 2012. “Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum”. BMC Microbiology 12 (1): 198.
Heider, S., Peters-Wendisch, P., and Wendisch, V. F. (2012). Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum. BMC Microbiology 12:198.
Heider, S., Peters-Wendisch, P., & Wendisch, V.F., 2012. Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum. BMC Microbiology, 12(1): 198.
S. Heider, P. Peters-Wendisch, and V.F. Wendisch, “Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum”, BMC Microbiology, vol. 12, 2012, : 198.
Heider, S., Peters-Wendisch, P., Wendisch, V.F.: Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum. BMC Microbiology. 12, : 198 (2012).
Heider, Sabine, Peters-Wendisch, Petra, and Wendisch, Volker F. “Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum”. BMC Microbiology 12.1 (2012): 198.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:05Z
MD5 Prüfsumme
a931876b830b1ff2df9000fd8852891f


38 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Identifying and engineering the ideal microbial terpenoid production host.
Moser S, Pichler H., Appl Microbiol Biotechnol 103(14), 2019
PMID: 31129740
Patchoulol Production with Metabolically Engineered Corynebacterium glutamicum.
Henke NA, Wichmann J, Baier T, Frohwitter J, Lauersen KJ, Risse JM, Peters-Wendisch P, Kruse O, Wendisch VF., Genes (Basel) 9(4), 2018
PMID: 29673223
Transport and metabolic engineering of the cell factory Corynebacterium glutamicum.
Pérez-García F, Wendisch VF., FEMS Microbiol Lett 365(16), 2018
PMID: 29982619
Progress in Microbial Carotenoids Production.
Saini RK, Keum YS., Indian J Microbiol 57(1), 2017
PMID: 28148991
Isoprenoid Pyrophosphate-Dependent Transcriptional Regulation of Carotenogenesis in Corynebacterium glutamicum.
Henke NA, Heider SAE, Hannibal S, Wendisch VF, Peters-Wendisch P., Front Microbiol 8(), 2017
PMID: 28484430
ProCarDB: a database of bacterial carotenoids.
Nupur LN, Vats A, Dhanda SK, Raghava GP, Pinnaka AK, Kumar A., BMC Microbiol 16(), 2016
PMID: 27230105
Combined mutagenesis of Rhodosporidium toruloides for improved production of carotenoids and lipids.
Zhang C, Shen H, Zhang X, Yu X, Wang H, Xiao S, Wang J, Zhao ZK., Biotechnol Lett 38(10), 2016
PMID: 27311308
Production of the Marine Carotenoid Astaxanthin by Metabolically Engineered Corynebacterium glutamicum.
Henke NA, Heider SA, Peters-Wendisch P, Wendisch VF., Mar Drugs 14(7), 2016
PMID: 27376307
Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms.
de Oliveira JD, Carvalho LS, Gomes AM, Queiroz LR, Magalhães BS, Parachin NS, Parachin NS., Microb Cell Fact 15(1), 2016
PMID: 27370777
Corynebacterium glutamicum possesses β-N-acetylglucosaminidase.
Matano C, Kolkenbrock S, Hamer SN, Sgobba E, Moerschbacher BM, Wendisch VF., BMC Microbiol 16(1), 2016
PMID: 27492186
Light-Controlled Cell Factories: Employing Photocaged Isopropyl-β-d-Thiogalactopyranoside for Light-Mediated Optimization of lac Promoter-Based Gene Expression and (+)-Valencene Biosynthesis in Corynebacterium glutamicum.
Binder D, Frohwitter J, Mahr R, Bier C, Grünberger A, Loeschcke A, Peters-Wendisch P, Kohlheyer D, Pietruszka J, Frunzke J, Jaeger KE, Wendisch VF, Drepper T., Appl Environ Microbiol 82(20), 2016
PMID: 27520809
Genomic and phenotypic insights into the ecology of Arthrobacter from Antarctic soils.
Dsouza M, Taylor MW, Turner SJ, Aislabie J., BMC Genomics 16(), 2015
PMID: 25649291
Complete biosynthetic pathway of the C50 carotenoid bacterioruberin from lycopene in the extremely halophilic archaeon Haloarcula japonica.
Yang Y, Yatsunami R, Ando A, Miyoko N, Fukui T, Takaichi S, Nakamura S., J Bacteriol 197(9), 2015
PMID: 25712483
Production and glucosylation of C50 and C 40 carotenoids by metabolically engineered Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Netzer R, Stafnes M, Brautaset T, Wendisch VF., Appl Microbiol Biotechnol 98(3), 2014
PMID: 24270893
Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production.
Peters-Wendisch P, Götker S, Heider SA, Komati Reddy G, Nguyen AQ, Stansen KC, Wendisch VF., J Biotechnol 192 Pt B(), 2014
PMID: 24486440
Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Krämer R, Wendisch VF, Seibold GM., Appl Microbiol Biotechnol 98(12), 2014
PMID: 24668244
Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids.
Heider SA, Peters-Wendisch P, Wendisch VF, Beekwilder J, Brautaset T., Appl Microbiol Biotechnol 98(10), 2014
PMID: 24687754
Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum.
Frohwitter J, Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF., J Biotechnol 191(), 2014
PMID: 24910970
Biosynthesis of pinene from glucose using metabolically-engineered Corynebacterium glutamicum.
Kang MK, Eom JH, Kim Y, Um Y, Woo HM., Biotechnol Lett 36(10), 2014
PMID: 24930112
Optimization of the IPP Precursor Supply for the Production of Lycopene, Decaprenoxanthin and Astaxanthin by Corynebacterium glutamicum.
Heider SA, Wolf N, Hofemeier A, Peters-Wendisch P, Wendisch VF., Front Bioeng Biotechnol 2(), 2014
PMID: 25191655
IdsA is the major geranylgeranyl pyrophosphate synthase involved in carotenogenesis in Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF., FEBS J 281(21), 2014
PMID: 25181035
Development of fatty acid-producing Corynebacterium glutamicum strains.
Takeno S, Takasaki M, Urabayashi A, Mimura A, Muramatsu T, Mitsuhashi S, Ikeda M., Appl Environ Microbiol 79(21), 2013
PMID: 23995924
Genomes of "Spiribacter", a streamlined, successful halophilic bacterium.
López-Pérez M, Ghai R, Leon MJ, Rodríguez-Olmos Á, Copa-Patiño JL, Soliveri J, Sanchez-Porro C, Ventosa A, Rodriguez-Valera F., BMC Genomics 14(), 2013
PMID: 24225341

50 References

Daten bereitgestellt von Europe PubMed Central.

Metabolic engineering towards biotechnological production of carotenoids in microorganisms.
Lee PC, Schmidt-Dannert C., Appl. Microbiol. Biotechnol. 60(1-2), 2002
PMID: 12382037
Vitamin synthesis: carotenoids, biotin and pantothenate
AUTHOR UNKNOWN, 2005
Biological functions of carotenoids--diversity and evolution.
Vershinin A., Biofactors 10(2-3), 1999
PMID: 10609869
A prospective study of lycopene and tomato product intake and risk of prostate cancer.
Kirsh VA, Mayne ST, Peters U, Chatterjee N, Leitzmann MF, Dixon LB, Urban DA, Crawford ED, Hayes RB., Cancer Epidemiol. Biomarkers Prev. 15(1), 2006
PMID: 16434593
Pathway engineering for functional isoprenoids.
Misawa N., Curr. Opin. Biotechnol. 22(5), 2011
PMID: 21310602
Carotenoid accumulation in bacteria with enhanced supply of isoprenoid precursors by upregulation of exogenous or endogenous pathways.
Rodriguez-Villalon A, Perez-Gil J, Rodriguez-Concepcion M., J. Biotechnol. 135(1), 2008
PMID: 18417238
Engineering a mevalonate pathway in Escherichia coli for production of terpenoids.
Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD., Nat. Biotechnol. 21(7), 2003
PMID: 12778056
Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control.
Leonard E, Ajikumar PK, Thayer K, Xiao WH, Mo JD, Tidor B, Stephanopoulos G, Prather KL., Proc. Natl. Acad. Sci. U.S.A. 107(31), 2010
PMID: 20643967
Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes.
Lange BM, Rujan T, Martin W, Croteau R., Proc. Natl. Acad. Sci. U.S.A. 97(24), 2000
PMID: 11078528
Genes and enzymes involved in bacterial isoprenoid biosynthesis.
Daum M, Herrmann S, Wilkinson B, Bechthold A., Curr Opin Chem Biol 13(2), 2009
PMID: 19318289
Biosynthesis of plant isoprenoids: perspectives for microbial engineering.
Kirby J, Keasling JD., Annu Rev Plant Biol 60(), 2009
PMID: 19575586
Detailed biosynthetic pathway to decaprenoxanthin diglucoside in Corynebacterium glutamicum and identification of novel intermediates.
Krubasik P, Takaichi S, Maoka T, Kobayashi M, Masamoto K, Sandmann G., Arch. Microbiol. 176(3), 2001
PMID: 11511870
The isolation and description of two marine micro-organisms with special reference to their pigment production.
HODGKISS W, LISTON J, GOODWIN TW, JAMIKORN M., J. Gen. Microbiol. 11(3), 1954
PMID: 13221765
The Carotenoids of Corynebacterium fascians Strain 2 Y
AUTHOR UNKNOWN, 0
Thiamine and the carotenoid pigments of Corynebacterium poinsettiae.
STARR MP, SAPERSTEIN S., Arch. Biochem. Biophys. 43(1), 1953
PMID: 13031671
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626

AUTHOR UNKNOWN, 2005
Sigma factors and promoters in Corynebacterium glutamicum.
Patek M, Nesvera J., J. Biotechnol. 154(2-3), 2011
PMID: 21277915
Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli.
Alper H, Jin YS, Moxley JF, Stephanopoulos G., Metab. Eng. 7(3), 2005
PMID: 15885614
Increase of lycopene production by supplementing auxiliary carbon sources in metabolically engineered Escherichia coli.
Kim YS, Lee JH, Kim NH, Yeom SJ, Kim SW, Oh DK., Appl. Microbiol. Biotechnol. 90(2), 2011
PMID: 21246354
The chemistry of novel xanthophyll carotenoids.
Jackson H, Braun CL, Ernst H., Am. J. Cardiol. 101(10A), 2008
PMID: 18474275
Antioxidant activities of astaxanthin and related carotenoids.
Naguib YM., J. Agric. Food Chem. 48(4), 2000
PMID: 10775364
Antioxidant activities of carotenes and xanthophylls.
Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA., FEBS Lett. 384(3), 1996
PMID: 8617362
Experiments
AUTHOR UNKNOWN, 2005

AUTHOR UNKNOWN, 2001
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis.
Netzer R, Krause M, Rittmann D, Peters-Wendisch PG, Eggeling L, Wendisch VF, Sahm H., Arch. Microbiol. 182(5), 2004
PMID: 15375646
Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum.
Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF., J. Bacteriol. 190(19), 2008
PMID: 18658264
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
Taxonomical studies on glutamic acid producing bacteria
AUTHOR UNKNOWN, 1967
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22963379
PubMed | Europe PMC

Suchen in

Google Scholar